【題目】為準(zhǔn)確把握市場規(guī)律,某公司對其所屬商品售價進(jìn)行市場調(diào)查和模型分析,發(fā)現(xiàn)該商品一年內(nèi)每件的售價按月近似呈的模型波動(為月份),已知3月份每件售價達(dá)到最高90元,直到7月份每件售價變?yōu)樽畹?/span>50元.則根據(jù)模型可知在10月份每件售價約為_____.(結(jié)果保留整數(shù))
【答案】84
【解析】
根據(jù)題意,可得當(dāng)時,函數(shù)有最大值為90;當(dāng)時,函數(shù)有最小值50,再利用正弦函數(shù)的最值,聯(lián)列方程組,解之可得,.根據(jù)函數(shù)的周期,結(jié)合題意得到,最后用函數(shù)取最大值時對應(yīng)的值,可得,從而可以確定的解析式,再求10月份每件售價.
月份達(dá)到最高價90元,7月份價格最低為50元,
當(dāng)時,函數(shù)有最大值為90;當(dāng)時,函數(shù)有最小值50,
,可得,
又函數(shù)的周期,
由,得,
當(dāng)時,函數(shù)有最大值,
,即,得,
的解析式為:.
所以
故答案為: 84
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月,國內(nèi)新冠肺炎疫情得到有效控制,人們開始走出家門享受春光.某旅游景點為吸引游客,推出團(tuán)體購票優(yōu)惠方案如下表:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
兩個旅游團(tuán)隊計劃游覽該景點.若分別購票,則共需支付門票費1290元;若合并成個團(tuán)隊購票,則需支付門票費990元,那么這兩個旅游團(tuán)隊的人數(shù)之差為( )
A.20B.25C.30D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P在拋物線上,且點P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準(zhǔn)線交于M,N兩點,且.
(1)求拋物線C的方程;
(2)若拋物線的準(zhǔn)線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)設(shè)點,直線與橢圓C交于兩個不同點P,Q,直線AP與x軸交于點M,直線AQ與x軸交于點N,若|OM|·|ON|=2,求證:直線l經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高中學(xué)生對數(shù)學(xué)課是否喜愛是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見進(jìn)行了統(tǒng)計,得到如下的列聯(lián)表.
喜愛數(shù)學(xué)課 | 不喜愛數(shù)學(xué)課 | 合計 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計 | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為“喜愛數(shù)學(xué)課與性別”有關(guān);
(2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛數(shù)學(xué)課的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com