(2012•樂山二模)如圖,球O夾在銳二面角α-l-β之間,與兩個(gè)半平面的切點(diǎn)分別為A、B,若AB=
3
,球心O到二面角的棱l的距離為2,則球O的表面積為( 。
分析:畫出截面OACB的圖形,設(shè)OAB平面與棱l交于點(diǎn)C,則△OAC為直角三角形,利用等面積,求出球的半徑,從而可求球的表面積.
解答:解:設(shè)OAB平面與棱l交于點(diǎn)C,則△OAC為直角三角形,且AB⊥OC,OC=2
設(shè)OA=x,AC=y,則由等面積可得xy=
3

∵x2+y2=4
x=1
y=
3
x=
3
y=1

x=1
y=
3
時(shí),∠ACO=30°,∠ACB=60°,滿足題意,球的表面積為4π;
x=
3
y=1
時(shí),∠ACO=60°,∠ACB=120°,不滿足題意,
故選A.
點(diǎn)評(píng):本題考查球的表面積,空間想象能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)已知x、y∈R+,x+y=4-2xy,則x+y的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)一個(gè)頻率分布表(樣本容量為30)不小心被損壞了一部分(如圖),只記得樣本中數(shù)據(jù)在[20,60)上的頻率為0.8,則估計(jì)樣本在[40,50),[50,60)內(nèi)的數(shù)據(jù)個(gè)數(shù)可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)若函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)減區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)對(duì)于非空集合A、B,定義運(yùn)算A⊕B={x|x∈A∪B,且x∉A∩B.已知兩個(gè)開區(qū)間M=(a,b),N=(c,d),其中a、b、c、d滿足a+b<c+d,ab=cd<0,則M⊕N=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案