如圖,已知正方形和矩形所在的平面互相垂直,

是線段的中點(diǎn).
(1)求證∥平面;
(2)試在線段上確定一點(diǎn),使得所成的角是.
(Ⅰ)見(jiàn)解析   (Ⅱ) 點(diǎn)的中點(diǎn)
 (1) 如圖建立空間直角坐標(biāo)系.

設(shè),連結(jié),則…………2分
  ∴ ,
…………4分
  且不共線,
,又平面,平面,
∥平面.    …………6分
(2) 設(shè) ,
=, =.又∵所成的角為60°,… 8分
,………… 9分
解之得(舍去),…………11分
故點(diǎn)的中點(diǎn). …………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,為底邊的中點(diǎn),為側(cè)棱的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,正三棱錐的三條側(cè)棱、兩兩垂直,且長(zhǎng)度均為2.分別是、的中點(diǎn),的中點(diǎn),過(guò)作平面與側(cè)棱、或其延長(zhǎng)線分別相交于、、,已知。
(1)求證:⊥平面
(2)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在三棱錐中,,.
(1)  求三棱錐的體積;
(2)  證明:;
(3)  求異面直線SB和AC所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在五面體,ABCDF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),面ABF是等邊三角形,棱EF=
(1)證明EO∥平面ABF;
(2)問(wèn)為何值時(shí),有OF⊥ABE,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直三棱柱中,,
,,點(diǎn)D是的中點(diǎn)

⑴求證:;
⑵求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

長(zhǎng)方體的長(zhǎng)、寬、高分別為a,b,c,對(duì)角線長(zhǎng)為l,則下列結(jié)論正確的是      (所有正確的序號(hào)都寫(xiě)上)。
(1);(2);(3);(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。
(1)求異面直線AE與A1C所成的角;
(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;
(3)在(2)的條件下,求二面角A1-AG-E的大小(文科求其正切值)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方體ABCD-A1B1C1D1,AD1A1D相交于點(diǎn)O

(1)判斷AD1與平面A1B1CD的位置關(guān)系,并證明;
(2)求直線AB1與平面A1B1CD所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案