精英家教網 > 高中數學 > 題目詳情

設函數數學公式
(1)若k=0,求f(x)的最小值;
(2)若當x≥0時f(x)≥1,求實數k的取值范圍.

解:(1)k=0時,f(x)=ex-x,
f'(x)=ex-1.
當x∈(-∞,0)時,f'(x)<0;當x∈(0,+∞)時,f'(x)>0.
所以f(x)在(-∞,0)上單調減小,在(0,+∞)上單調增加
故f(x)的最小值為f(0)=1
(2)f'(x)=ex-kx-1,
f''(x)=ex-k
當k≤1時,f''(x)≥0(x≥0),
所以f'(x)在[0,+∞)上遞增,
而f'(0)=0,
所以f'(x)≥0(x≥0),
所以f(x)在[0,+∞)上遞增,
而f(0)=1,
于是當x≥0時,f(x)≥1.
當k>1時,
由f''(x)=0得x=lnk
當x∈(0,lnk)時,f''(x)<0,所以f'(x)在(0,lnk)上遞減,
而f'(0)=0,于是當x∈(0,lnk)時,f'(x)<0,所以f(x)在(0,lnk)上遞減,
而f(0)=1,所以當x∈(0,lnk)時,f(x)<1.
綜上得k的取值范圍為(-∞,1].
分析:(1)將k的值代入f(x),求出f(x)的導函數,令導函數大于0求出函數的單調遞增區(qū)間,令導函數小于0求出函數的單調遞減區(qū)間,求出函數的最小值.
(2)求出f(x)的導函數,再求出導函數的導數,通過對k的討論,判斷出二階導數的符號,判斷出f(x)的導函數的最值,從而判斷出導函數的符號,得到f(x)的單調性,求出f(x)的最小值,令最小值大于1,列出不等式求出k的范圍.
點評:本題考查導數在最大值與最小值問題中的應用,解題的關鍵是利用導數研究出函數的單調性,判斷出函數的最值,本題第二小題是一個恒成立的問題,恒成立的問題一般轉化最值問題來求解,本題即轉化為用單調性求函數在閉區(qū)間上的最值的問題,求出最值再判斷出參數的取值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數,

(1)若,解不等式;w.w.w.k.s.5.u.c.o.m          

(2)如果對任意,不等式恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶市南開中學高一(上)期末數學試卷(解析版) 題型:解答題

己知實數m≠0,又,設函數
(1)若m>0,且f(-2)=f(2),求m的值;
(2)若對一切正整數k,有f(2k)>f(2k-1),求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2013年陜西師大附中高考數學一模試卷(理科)(解析版) 題型:解答題

設函數
(1)若k=0,求f(x)的最小值;
(2)若當x≥0時f(x)≥1,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年陜西省西安市西工大附中高考數學五模試卷(解析版) 題型:解答題

設函數
(1)若k=0,求f(x)的最小值;
(2)若當x≥0時f(x)≥1,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案