【題目】某生物小組為了研究溫度對某種酶的活性的影響進行了一組實驗,得到的實驗數據經整理得到如下的折線圖:
(1)由圖可以看出,這種酶的活性與溫度具有較強的線性相關性,請用相關系數加以說明;
(2)求關于的線性回歸方程,并預測當溫度為時,這種酶的活性指標值.(計算結果精確到0.01)
參考數據:,,,.
參考公式:相關系數.
回歸直線方程,,.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖。
(1)據圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數;
(2)規(guī)定每周平均體育運動時間不少于6小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數據中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優(yōu)秀”與年級有關”.
基礎年級 | 高三 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年12月份,我國湖北武漢出現了新型冠狀病毒,人感染后會出現發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了增強居民防護意識,增加居民防護知識,某居委會利用網絡舉辦社區(qū)線上預防新冠肺炎知識答題比賽,所有居民都參與了防護知識網上答卷,最終甲、乙兩人得分最高進入決賽,該社區(qū)設計了一個決賽方案:①甲、乙兩人各自從個問題中隨機抽個.已知這個問題中,甲能正確回答其中的個,而乙能正確回答每個問題的概率均為,甲、乙兩人對每個問題的回答相互獨立、互不影響;②答對題目個數多的人獲勝,若兩人答對題目數相同,則由乙再從剩下的道題中選一道作答,答對則判乙勝,答錯則判甲勝.
(1)求甲、乙兩人共答對個問題的概率;
(2)試判斷甲、乙誰更有可能獲勝?并說明理由;
(3)求乙答對題目數的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現抗體.試驗設計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現抗體的概率為,假設每次接種后當天是否出現抗體與上次接種無關.
(1)求一個接種周期內出現抗體次數的分布列;
(2)已知每天接種一次花費100元,現有以下兩種試驗方案:
①若在一個接種周期內連續(xù)2次出現抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設此種試驗方式的花費為元;
②若在一個接種周期內出現2次或3次抗體,該周期結束后終止試驗,已知試驗至多持續(xù)三個接種周期,設此種試驗方式的花費為元.
比較隨機變量和的數學期望的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每年春晚都是萬眾矚目的時刻,這些節(jié)目體現的文化內涵、歷史背景等反映了社會的進步.國家的富強,人民生活水平的提高等.某學校高三年級主任開學初為了解學生在看春晚后對節(jié)目體現的文化內涵、歷史背景等是否會在今年的高考題中體現進行過思考,特地隨機抽取100名高三學生(其中文科學生50,理科學生50名),進行了調查.統(tǒng)計數據如表所示(不完整):
“思考過” | “沒有思考過” | 總計 | |
文科學生 | 40 | 10 | |
理科學生 | 30 | ||
總計 | 100 |
(1)補充完整所給表格,并根據表格數據計算是否有的把握認為看春晚后會思考節(jié)目體現的文化內涵、歷史背景等與文理科學生有關;
(2)①現從上表的”思考過”的文理科學生中按分層抽樣選出7人.再從這7人中隨機抽取4人,記這4人中“文科學生”的人數為,試求的分布列與數學期望;
②現設計一份試卷(題目知識點來自春晚相關知識整合與變化),假設“思考過”的學生及格率為,“沒有思考過”的學生的及格率為.現從“思考過”與“沒有思考過”的學生中分別隨機抽取一名學生進行測試,求兩人至少有一個及格的概率.
附參考公式:,其中.
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)產值在2008年~2017年的年增量(即當年產值比前一年產值增加的量)統(tǒng)計圖如圖所示(單位:萬元),下列說法正確的是( )
A. 2009年產值比2008年產值少
B. 從2011年到2015年,產值年增量逐年減少
C. 產值年增量的增量最大的是2017年
D. 2016年的產值年增長率可能比2012年的產值年增長率低
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com