【題目】橢圓的左右焦點(diǎn)分別為為坐標(biāo)原點(diǎn),以下說法正確的是(

A.過點(diǎn)的直線與橢圓交于兩點(diǎn),則的周長為.

B.橢圓上存在點(diǎn),使得.

C.橢圓的離心率為

D.為橢圓一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為.

【答案】ABD

【解析】

根據(jù)橢圓的定義,可判斷A;根據(jù)數(shù)量積運(yùn)算,以及橢圓的性質(zhì),可判斷B;根據(jù)離心率的定義,可判斷出C;根據(jù)點(diǎn)與圓位置關(guān)系,以及橢圓的性質(zhì),可判斷D.

對(duì)于選項(xiàng)A,因?yàn)?/span>分別為橢圓的左右焦點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn),由橢圓定義可得:,

因此的周長為,故A正確;

對(duì)于選項(xiàng)B,設(shè)點(diǎn)為橢圓上任意一點(diǎn),

則點(diǎn)坐標(biāo)滿足,且

,所以,

因此,

,可得:,故B正確;

對(duì)于選項(xiàng)C,因?yàn)?/span>,,所以,即

所以離心率為,故C錯(cuò);

對(duì)于選項(xiàng)D,設(shè)點(diǎn)為橢圓上任意一點(diǎn),

由題意可得:點(diǎn)到圓的圓心的距離為:,

因?yàn)?/span>,所以.D正確;

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動(dòng)點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題不正確的是(

A.,且,則

B.,且,則

C.若直線直線,則直線與直線確定一個(gè)平面

D.三點(diǎn)確定一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別是通過某城市開發(fā)區(qū)中心O的兩條東西和南北走向的街道,連接MN兩地間的鐵路是圓心在上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且,點(diǎn)N的距離分別為5km和4km

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路路線所在圓弧的方程.

(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路上任意一點(diǎn)到校址的距離不能小于km,求該校址距點(diǎn)O的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入21世紀(jì),互聯(lián)網(wǎng)和通訊技術(shù)高速發(fā)展使商務(wù)進(jìn)入一個(gè)全新的階段,網(wǎng)上購物這一方便、快捷的購物形式已經(jīng)被越來越多的人所接受某互聯(lián)網(wǎng)公司為進(jìn)一步了解大學(xué)生的網(wǎng)上購物的情況,對(duì)大學(xué)生的消費(fèi)金額進(jìn)行了調(diào)查研究,得到如下統(tǒng)計(jì)表:

組數(shù)

消費(fèi)金額

人數(shù)

頻率

第一組

1100

第二組

3900

第三組

3000

p

第四組

1200

第五組

不低于200

m

m,p的值;

該公司從參與調(diào)查且購物滿150元的學(xué)生中采用分層抽樣的方法抽取作為中獎(jiǎng)用戶,再隨機(jī)抽取中獎(jiǎng)用戶的獲得一等獎(jiǎng)求第五組至少1人獲得一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應(yīng)年份序號(hào)的數(shù)據(jù)表和散點(diǎn)圖如圖所示,根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個(gè)數(shù)單位:個(gè)關(guān)于x的回歸方程

年份序號(hào)x

1

2

3

4

5

6

7

8

9

年養(yǎng)殖山羊萬只

根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程參考統(tǒng)計(jì)量:,

試估計(jì):該縣第一年養(yǎng)殖山羊多少萬只

到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(l)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,

(Ⅰ)若點(diǎn),求直線的方程;

(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線,的斜率分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的右焦點(diǎn)的直線與橢圓交于A,B,過垂直的直線與橢圓交于,,與交于,求證:直線,的斜率,成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案