已知函數(shù)
(1)求的最小正周期及取得最大值時(shí)x的集合;
(2)在平面直角坐標(biāo)系中畫出函數(shù)在上的圖象.
(1),Z}(2)
【解析】
試題分析:(I)
= 3分
所以的最小正周期是 4分
R,所以當(dāng)Z)時(shí),的最大值為.
即取得最大值時(shí)x的集合為Z} 6分
(II)圖像如下圖所示:(閱卷時(shí)注意以下3點(diǎn))
1.最大值,
最小值. 8分
2.增區(qū)間
減區(qū)間 10分
3.圖像上的特殊點(diǎn):(0,-1),(),(), 12分
考點(diǎn):三角函數(shù)化簡及性質(zhì)
點(diǎn)評:三角函數(shù)化簡時(shí)要用到各類三角公式,如誘導(dǎo)公式,倍角公式,和差角正余弦公式等,需將解析式整理為的形式才可求其性質(zhì),在做圖像時(shí)常采用五點(diǎn)作圖法
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知函數(shù),
(1)求的單調(diào)區(qū)間;
(2)若對任意的,都存在,使得,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高一上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題
(本題8分)已知函數(shù)
(1) 求的定義域;
(2) 證明函數(shù)在 上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河南省焦作市高一下學(xué)期數(shù)學(xué)必修4水平測試 題型:解答題
(10分)已知函數(shù).
(1)求的最小正周期;
(2)求在區(qū)間上的最大值和最小值以及取得最大值、最小值時(shí)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com