【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設,判斷在上是否為有界函數(shù),若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
【答案】(1)是,理由見解析,(2)
【解析】
(1)根據(jù)的單調性求得在區(qū)間上的取值范圍,由此得出,進而判斷出在在上是有界函數(shù),并由此求得所有上屆的集合.
(2)根據(jù)的上界得到,令進行換元、分離常數(shù),將問題轉化為,然后利用導數(shù)求得在區(qū)間上,函數(shù)的最大值以及函數(shù)的最小值,由此求得實數(shù)的取值范圍.
(1),,則在上是增函數(shù),故,即,
故,所以是有界函數(shù).
所以,上界滿足,所有上界的集合是.
(2)由題意,對恒成立,
即,
令,則,原不等式變?yōu)?/span>,
故, 故,
令,當時,,即函數(shù)在區(qū)間上是增函數(shù),故.
令,當時,,即函數(shù)在區(qū)間上是減函數(shù),故.
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的所有項都是不等于的正數(shù),的前項和為,已知點在直線上(其中常數(shù),且)數(shù)列,又.
(1)求證數(shù)列是等比數(shù)列;
(2)如果,求實數(shù)的值;
(3)若果存在使得點和都在直線在上,是否存在自然數(shù),當()時,恒成立?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記點到圖形上每一個點的距離的最小值稱為點到圖形的距離,那么平面內到定圓的距離與到定點的距離相等的點的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列,稱(其中)為數(shù)列的前k項“波動均值”.若對任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項為1,各項均為整數(shù),前項的和為. 且對任意,都有, 試計算: ().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為函數(shù)(,為定義域)圖像上的一個動點,為坐標原點,為點與點兩點間的距離.
(1)若,求的最大值與最小值;
(2)若,是否存在實數(shù),使得的最小值不小于2?若存在,請求出的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:
研發(fā)費用(百萬元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);
(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.
附:(1)相關系數(shù)
(2),,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)過點作傾斜角為的直線交于兩點,過作與平行的直線交于點,若,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”。注:。
(1)證明函數(shù)在上是“絕對差有界函數(shù)”。
(2)證明函數(shù)不是上的“絕對差有界函數(shù)”。
(3)記集合存在常數(shù),對任意的,有成立,證明集合中的任意函數(shù)為“絕對差有界函數(shù)”,并判斷是否在集合中,如果在,請證明并求的最小值;如果不在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某甲籃球隊的12名隊員(含2名外援)中有5名主力隊員(含一名外援),主教練要從12名隊員中選5人首發(fā)上場,則主力隊員不少于4人,且有一名外援上場的概率是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com