【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線相交于 兩點,求的值.

【答案】(1) (2)

【解析】試題分析:(1)將參數(shù)方程利用代入法消去參數(shù)可得直線的普通方程,將曲線的極坐標方程兩邊同乘以利用 即可得曲線的直角坐標方程;(2)把直線的參數(shù)方程為參數(shù))代入曲線的直角坐標方程,利用韋達定理及直線參數(shù)方程的幾何意義可得結果.

試題解析:(1)由已知得: ,消去,

∴化為一般方程為: ,

即: .

曲線 得, ,即,整理得,

即: .

(2)把直線的參數(shù)方程為參數(shù))代入曲線的直角坐標方程中得:

,即,

兩點對應的參數(shù)分別為, ,則,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義方程的實數(shù)根叫做函數(shù)的“新駐點”,若函數(shù),,的“新駐點”分別為,則的大小關系為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與圓關于直線對稱.

(1)求圓的標準方程;

(2)已知點,若與直線垂直的直線與圓交于不同兩點、,且是鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一款手機,每部購買費用是5000元,每年網(wǎng)絡費和電話費共需1000元;每部手機第一年不需維修,第二年維修費用為100元,以后每一年的維修費用均比上一年增加100.設該款手機每部使用年共需維修費用元,總費用.(總費用購買費用網(wǎng)絡費和電話費維修費用)

1)求函數(shù)、的表達式:

2)這款手機每部使用多少年時,它的年平均費用最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項和.

1)若1,1,求的值;

2若首項,,是正整數(shù),滿足不等式|63|62,對于任意正整數(shù)都成立,問:這樣的數(shù)列有幾個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設O為坐標原點,點A,B分別在橢圓C1和C2上, =2 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為的圓過點,且與直線相切于點

1)求圓的方程;

2)已知點,且對于圓上任一點,線段上存在異于點的一點,使得為常數(shù)),試判斷使的面積等于4的點有幾個,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)在定義域內的極值點的個數(shù);

2)若函數(shù)處取得極值,且對任意, 恒成立,求實數(shù)的取值范圍;

3)當時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,底面邊長和側棱長都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為

查看答案和解析>>

同步練習冊答案