已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求在上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).
(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
(2)在上的最大值為;
(3) 證明過程詳見試題解析.
解析試題分析:(1)先對函數(shù)求導(dǎo),令導(dǎo)函數(shù)為0,即可求得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減. (2)結(jié)合函數(shù)的單調(diào)性,分時,時,三種情況進行討論,即可求在上的最大值;(3) 把證明過程轉(zhuǎn)化為恒成立問題即可.
試題解析:(1)解:(1)函數(shù)的定義域是.由已知.
令,得.
因為當(dāng)時,;當(dāng)時,.
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)可知當(dāng),即時,在上單調(diào)遞增,所以.
當(dāng)時,在上單調(diào)遞減,所以.
當(dāng),即時,.
綜上所述,
(3)由(1)知當(dāng)時.所以在時恒有,即,當(dāng)且僅當(dāng)時等號成立.因此對任意恒有.因為,,所以,即.因此對任意,不等式.
考點:導(dǎo)函數(shù)的應(yīng)用、最值問題、恒成立問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當(dāng)時,曲線上總存在相異兩點,,,使得曲線在、處的切線互相平行,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)其中a是實數(shù).設(shè),為該函數(shù)圖象上的兩點,且.
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且,求的最小值;
(3)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
(Ⅰ)當(dāng)時,
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;
(Ⅱ)已知曲線在其圖象上的兩點,()處的切線分別為.若直線與平行,試探究點與點的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)若,求函數(shù)在上的最小值;
(2)若函數(shù)在存在單調(diào)遞增區(qū)間,試求實數(shù)的取值范圍;
(3)求函數(shù)的極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com