【題目】為了調(diào)查公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(1)是否有的把握認為飲食習(xí)慣與月收入有關(guān)系?若有,請說明理由,若沒有,說明理由并分析原因;

(2)從飲食指數(shù)在內(nèi)的員工中任選2人,求他們的飲食指數(shù)均在內(nèi)的概率;

(3)經(jīng)調(diào)查某地若干戶家庭的年收入(萬元)和年飲支出(萬元)具有線性相關(guān)關(guān)系,并得到關(guān)于的回歸直線方程:.若一個員工的月收入恰好為這30人的月平均收入,估計該人的年飲食支出費用.

附:,.

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)有;(2);(3)1.6881萬元.

【解析】

(1)計算,根據(jù)值作出結(jié)論;(2)列出所有可能共10種,其中飲食指數(shù)均在內(nèi)的有3種,由古典概型求解即可(3)根據(jù)頻率分布直方圖求出此人月均收入,計算出年均收入代入回歸直線方程即可求解.

(1)根據(jù)頻率分布直方圖,月收入4000元以上的人數(shù)為,

所以完成下列列聯(lián)表如下:

月收入4000元以下

月收入4000元以上

合計

主食

蔬菜

8

10

18

主食

肉類

1

11

12

合計

9

21

30

所以,故有的把握認為飲食習(xí)慣與月收入有關(guān)系,

(2)飲食指數(shù)在內(nèi)的員工有5人,其中在的有3人,設(shè)為,在的有2人,設(shè)為,從飲食指數(shù)在內(nèi)的員工中任選2人,

所有結(jié)果為,,,,,,,共10種,

其中他們的飲食指數(shù)均在內(nèi)的結(jié)果為,,共3種,

所以概率為.

(3)根據(jù)頻率分布直方圖,(百元),

所以(萬元),

故該人的年飲食支出費用約為1.6881萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

1若該蛋糕店某一天制作生日蛋糕17個,設(shè)當(dāng)天的需求量為,則當(dāng)天的利潤(單位:元)是多少?

2若蛋糕店一天制作17個生日蛋糕.

求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;

求當(dāng)天的利潤不低于600圓的概率.

(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個還是17個生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障全國第四次經(jīng)濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

10

50

個體經(jīng)營戶

100

50

150

合計

140

60

200

1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;

2)根據(jù)列聯(lián)表判斷是否有的把握認為此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān);

3)以該小區(qū)的個體經(jīng)營戶為樣本,頻率作為概率,從全國個體經(jīng)營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有A,BC、D四人先后感染了新型冠狀病毒,其中只有A到過疫區(qū),B肯定是受A感染的,對于C,因為難以判定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是,同樣也假設(shè)DA、BC感染的概率都是.在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量,寫出X的可能取值為______,并求X的均值(即數(shù)學(xué)期望)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點為別為,且過點.

(1)求橢圓的標(biāo)準方程;

(2)如圖,點為橢圓上一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1ξ2分別表示賭客在一局賭博中的賭金和獎金,則Dξ1)=_____,Eξ1)﹣Eξ2)=_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式(axa24)(x4)>0的解集為A,且A中共含有n個整數(shù),則當(dāng)n最小時實數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機種植一株茶樹,求該株茶樹恰好種在圭田內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,其中

(1)若滿足

①當(dāng),且時,求的值;

②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值

(2)設(shè)數(shù)列的前項和為,數(shù)列的前n項和為,,,,且恒成立,求的最小值

查看答案和解析>>

同步練習(xí)冊答案