設(shè)A、B、C及A1、B1、C1分別是異面直線l1、l2上的三點,而M、N、P、Q分別是線段AA1、BA1、BB1、CC1的中點.求證:M、N、P、Q四點共面
證明:
NM
=
1
2
BA
,
NP
=
1
2
A1B1

BA
=2
NM
,
A1B1
=2
NP

又∵
PQ
=
1
2
BC
+
B1C1
),(*)
A、B、C及A1、B1、C1分別共線,
BC
BA
=2λ
NM
,
B1C1
A1B1
=2ω
NP

代入(*)式得
PQ
=
1
2
(2λ
NM
+2ω
NP
)=λ
NM
NP
,∴
PQ
、
NM
、
NP
共面.
∴M、N、P、Q四點共面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C及A1、B1、C1分別是異面直線l1、l2上的三點,而M、N、P、Q分別是線段AA1、BA1、BB1、CC1的中點.求證:M、N、P、Q四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A、B、C及A1、B1、C1分別是異面直線l1、l2上的三點,而M、N、P、Q分別是線段AA1、BA1、BB1、CC1的中點.求證:M、N、P、Q四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A、B、C及A1、B1、C1分別是異面直線l1、l2上的三點,而M、N、P、Q分別是線段AA1、BA1、BB1、CC1的中點.求證:M、N、P、Q四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.1 空間向量及其運(yùn)算》2006年同步練習(xí)3(人教A版-選修2-1)(解析版) 題型:解答題

設(shè)A、B、C及A1、B1、C1分別是異面直線l1、l2上的三點,而M、N、P、Q分別是線段AA1、BA1、BB1、CC1的中點.求證:M、N、P、Q四點共面

查看答案和解析>>

同步練習(xí)冊答案