從數(shù)列中抽出一些項(xiàng),依原來(lái)的順序組成的新數(shù)列叫數(shù)列的一個(gè)子列.
(1)寫出數(shù)列的一個(gè)是等比數(shù)列的子列;
(2)設(shè)是無(wú)窮等比數(shù)列,首項(xiàng),公比為.求證:當(dāng)時(shí),數(shù)列不存在
是無(wú)窮等差數(shù)列的子列.
(1);(2)證明過(guò)程詳見(jiàn)解析.
解析試題分析:本題主要考查等差數(shù)列、等比數(shù)列的定義、通項(xiàng)公式及其性質(zhì)等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、邏輯推理能力.第一問(wèn),在數(shù)列的所有項(xiàng)中任意抽取幾項(xiàng),令其構(gòu)成等比數(shù)列即可,但是至少抽取3項(xiàng);第二問(wèn),分2種情況進(jìn)行討論:和,利用數(shù)列的單調(diào)性,先假設(shè)存在,在推導(dǎo)過(guò)程中找出矛盾即可.
試題解析:(1)(若只寫出2,8,32三項(xiàng)也給滿分). 4分
(2)證明:假設(shè)能抽出一個(gè)子列為無(wú)窮等差數(shù)列,設(shè)為,通項(xiàng)公式為.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/e/qcktc1.png" style="vertical-align:middle;" />
所以.
(1)當(dāng)時(shí),∈(0,1],且數(shù)列是遞減數(shù)列,
所以也為遞減數(shù)列且∈(0,1],,
令,得,
即存在使得,這與∈(0,1]矛盾.
(2)當(dāng)時(shí),≥1,數(shù)列是遞增數(shù)列,
所以也為遞增數(shù)列且≥1,.
因?yàn)閐為正的常數(shù),且,
所以存在正整數(shù)m使得.
令,則,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/e/wcx0u1.png" style="vertical-align:middle;" />=,
所以,即,但這與矛盾,說(shuō)明假設(shè)不成立.
綜上,所以數(shù)列不存在是無(wú)窮等差數(shù)列的子列. 13分
考點(diǎn):等差數(shù)列、等比數(shù)列的定義、通項(xiàng)公式及其性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為正項(xiàng)等比數(shù)列,,,為等差數(shù)列的前
項(xiàng)和,,.
(1)求和的通項(xiàng)公式;
(2)設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,a4和a8的等差中項(xiàng)為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是公差不為零的等差數(shù)列,,且是和的等比中項(xiàng),求:
(1)數(shù)列的通項(xiàng)公式;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列是等差數(shù)列,且且成等比數(shù)列。
(1).求數(shù)列的通項(xiàng)公式
(2).設(shè),求前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
從中這個(gè)數(shù)中取(,)個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個(gè)數(shù)記為.
(1)當(dāng)時(shí),寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的公差不為零,其前n項(xiàng)和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=,則數(shù)列{bn}的最小項(xiàng)是第幾項(xiàng),并求該項(xiàng)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com