精英家教網 > 高中數學 > 題目詳情

【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數量單位:百人的關系有如下規(guī)定:當時,擁擠等級為優(yōu);當時,擁擠等級為;當時,擁擠等級為擁擠;當時,擁擠等級為嚴重擁擠。該景區(qū)對6月份的游客數量作出如圖的統(tǒng)計數據:

下面是根據統(tǒng)計數據得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數的平均值同一組中的數據用該組區(qū)間的中點值作代表;

游客數量

單位:百人

天數

頻率

某人選擇在6月1日6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為優(yōu)的概率

【答案】 ,平均數為120; .

【解析】

試題分析: 一個月共30天,因此,從而,用中點值乘以頻率相加可得平均數;5天中任選2天,可用列舉法得出所有選擇方法,共10種,符合條件的有3種,由古典概率公式計算即得.

試題解析:游客人數在范圍內的天數共有15天,

,

游客人數的平均數為百人

從5天中任選兩天的選擇方法有:

,共10種,

其中游客等級均為優(yōu)的有,共3種,故所求概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設a,b是不同的直線,α,β是不同的平面,則下列四個命題中正確的是________.(填序號)

① 若a⊥b,a⊥α,則b∥α;② 若a∥α,α⊥β,則a⊥β;

③ 若a⊥β,α⊥β,則a∥α;④ 若a⊥b,a⊥α,b⊥β,則α⊥β.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經濟價值是種植乙水果經濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉光源滿足甲水果生長的需要,該光源照射范圍是,在直徑上,且

1)若米,求的長;

2)設, 求該空地產生最大經濟價值時種植甲種水果的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

1時,求曲線在點處的切線的斜率;

2時,求函數的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某幾何體的三視圖如圖所示則它的外接球表面積為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心為坐標原點,其離心率為,橢圓的一個焦點和拋物線的焦點重合.

(1)求橢圓的方程

(2)過點的動直線交橢圓、兩點,試問:在平面上是否存在一個定點,使得無論如何轉動,以為直徑的圓恒過點,若存在,說出點的坐標若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,過作垂直于軸的直線交橢圓兩點,且滿足.

(1)求橢圓的離心率;

(2)過作斜率為的直線兩點. 為坐標原點,若的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)準備投入適當的廣告費對產品進行促銷,在一年內預計銷售量Q(萬件)與廣告費x(萬元)之間的函數關系為Q= (x>1),已知生產該產品的年固定投入為3萬元,每生產1萬件該產品另需再投入32萬元,若每件銷售價為“年平均每件生產成本(生產成本不含廣告費)150%”與“年平均每件所占廣告費的50%”之和

(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數;(年利潤=銷售收入-成本)

(2)當年廣告費為多少萬元時,企業(yè)的年利潤最大?最大年利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圍建一個面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元)

1)將表示為的函數;

2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

同步練習冊答案