某中學(xué)一位高三班主任對(duì)本班名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:

 
積極參加班級(jí)工作
不太主動(dòng)參加班級(jí)工作
合計(jì)
學(xué)習(xí)積極性高
18
7
25
學(xué)習(xí)積極性一般
6
19
25
合計(jì)
24
26
50
 
(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)學(xué)生的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?說明理由.

(1)

解析試題分析:(1)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)50,滿足條件的事件數(shù)分別是24,19,根據(jù)概率公式得到結(jié)果.
(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入求觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為“學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度”有關(guān)系.
(1)設(shè)“抽到積極參加班級(jí)工作的學(xué)生”為事件A,“抽到不太積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生”為事件B,則由古典概型    
(2)根據(jù)
所以,我們有99.9%的把握認(rèn)為“學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度”有關(guān)系.
考點(diǎn):古典概型,相關(guān)性分析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:


2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
 
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校共有教職工900人,分成三個(gè)批次進(jìn)行繼續(xù)教育培訓(xùn),在三個(gè)批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機(jī)抽取1名,抽到第二批次中女教職工的概率是0.16.

 
第一批次
第二批次
第三批次
女教職工
196
x
y
男教職工
204
156
z
 
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查,問應(yīng)在第三批次中抽取教職工多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高一某班的一次數(shù)學(xué)測(cè)試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如下,據(jù)此解答如下問題:
 
(1)計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份試卷的分?jǐn)?shù)在之間的概率;
(3)根據(jù)頻率分布直方圖估計(jì)這次測(cè)試的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

電視傳媒為了解某市100萬觀眾對(duì)足球節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時(shí)間的頻率分布直方圖,將每周平均收看足球節(jié)目時(shí)間不低于1.5小時(shí)的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時(shí)間不低于2.5小時(shí)的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場(chǎng)足球比賽,已知該市的足球場(chǎng)可容納10萬名觀眾.根據(jù)調(diào)查,如果票價(jià)定為100元/張,則非“足球迷”均不會(huì)到現(xiàn)場(chǎng)觀看,而“足球迷”均愿意前往現(xiàn)場(chǎng)觀看.如果票價(jià)提高元/張,則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少,“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少.問票價(jià)至少定為多少元/張時(shí),才能使前往現(xiàn)場(chǎng)觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某普通高中共有教師人,分為三個(gè)批次參加研修培訓(xùn),在三個(gè)批次中男、女教師人數(shù)如下表所示:

 
第一批次
第二批次
第三批次
女教師



男教師



 
已知在全體教師中隨機(jī)抽取1名,抽到第二、三批次中女教師的概率分別是、
(1)求的值;
(2)為了調(diào)查研修效果,現(xiàn)從三個(gè)批次中按的比例抽取教師進(jìn)行問卷調(diào)查,三個(gè)批次被選取的人數(shù)分別是多少?
(3)若從(2)中選取的教師中隨機(jī)選出兩名教師進(jìn)行訪談,求參加訪談的兩名教師“分別來自兩個(gè)批次”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

汽車的碳排放量比較大,某地規(guī)定,從2014年開始,將對(duì)二氧化碳排放量超過130g/km的輕型汽車進(jìn)行懲罰性征稅.檢測(cè)單位對(duì)甲、乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測(cè),記錄如下(單位:g/km).

經(jīng)測(cè)算得乙品牌輕型汽車二氧化碳排放量的平均值為
(1)從被檢測(cè)的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過的概率是多少?
(2)求表中的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品的廣告費(fèi)支出x與銷售額(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x
2
4
5
6
8
y
30
40
50
60
70
 
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)經(jīng)計(jì)算,相關(guān)指數(shù),你可得到什么結(jié)論?
(參考數(shù)值:2×30+4×40+5×50+6×60+8×70==1390)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種水果的單個(gè)質(zhì)量在500g以上視為特等品.隨機(jī)抽取1000個(gè)該水果,結(jié)果有50個(gè)特等品.將這50個(gè)水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計(jì)該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測(cè)中,發(fā)現(xiàn)有15個(gè)特等品,據(jù)此估計(jì)該批水果中沒有達(dá)到特等品的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案