已知,若數(shù)列{an}

成等差數(shù)列.

  (1)求{}的通項;

  (2)設(shè) 若{b}的前n項和是Sn,且

解:(1)設(shè)2,f(a1), f(a2), f(a3),……,f(an),2n+4的公差為d,則

2n+4=2+(n+2-1)dd=2,

   (2),

      

   

   

   

   

   

   

   

   

   

   

  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}共有2k項(整數(shù)k≥2),首項a1=2,設(shè)該數(shù)列的前n項和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1),其中常數(shù)a>1.
(1)求{an}的通項公式;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an)
,(n=1,2,3,…,2k),求證:1≤bn≤2;
(3)若(2)中數(shù)列{bn}滿足不等式:|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4
,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年衡陽八中理)(13分)  已知,若數(shù)列{an}

成等差數(shù)列.

    (1)求{an}的通項an;

   (2)設(shè) 若{b}的前n項和是Sn,且 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

((12分)已知函數(shù).

(Ⅰ) 若數(shù)列{an}的首項為a1=1,(n??N+),求{an}的通項公式an;

 (Ⅱ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對于任意n??N+bn<成立. 若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省高三第五次模擬理數(shù)試卷(解析版) 題型:選擇題

已知函數(shù)若數(shù)列{an}滿足annN)且{an}是遞減數(shù)列,則實數(shù)a的取值范圍是(   )

A.(,1)           B.(,)          C.()         D.(,1)

 

查看答案和解析>>

同步練習(xí)冊答案