|
(1) |
解: |
(2) |
解:方程f(x)=5的解分別是,0,4和,由于f(x)在(-∞,-1]和[2,5]上單調(diào)遞減,在[-1,2]和[5,+∞)上單調(diào)遞增,因此 . 由于. |
(3) |
解法一:當(dāng)x∈[-1,5]時,. , ∵k>2 ∴.又-1≤x≤5, ① 當(dāng),即2<k≤6時,取, . , 則g(x)min>0 ② 當(dāng),即k>6時,取x=-1,g(x)min=2k>0. 由①、②可知,當(dāng)k>2時,g(x)>0,x∈[-1,5]. 因此,在區(qū)間[-1,5]上,的圖像位于函數(shù)f(x)圖像的上方. 解法二:當(dāng)x∈[-1,5]時,f(x)=-x2+4x+5. 由得x2+(k-4)x+(3k-5)=0, 令△=(k-4)2-4(3k-5)=0,解得k=2或k=18, 在區(qū)間[-1,5]上,當(dāng)k=2時,y=2(x+3)的圖像與函數(shù)f(x)的圖像只交于一點(1,8); 當(dāng)k=18時,y=18(x+3)的圖像與函數(shù)f(x)的圖像沒有交點. 如圖可知,由于直線y=k(x+3)過點(-3,0),當(dāng)k>2時,直線y=k(x+3)是由直線y=2(x+3)繞點(-3,0)逆時針方向旋轉(zhuǎn)得到.因此,在區(qū)間[-1,5]上,y=k(x+3)的圖像位于函數(shù)f(x)圖像的上方. |
科目:高中數(shù)學(xué) 來源:山西省實驗中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com