設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當面積最大時,求
(1);(2).
【解析】
試題分析:(1)由離心率和點.用待定系數(shù)法求出橢圓的方程.(2)利用點到直線的距離公式求出高及弦長公式求出弦長.分式形式的最值的求法要記牢.本題是對橢圓的基礎知識的測試.
試題解析:(1)由題意可得,,又,解得,
所以橢圓方程為
(2)根據(jù)題意可知,直線的斜率存在,故設直線的方程為,設,由方程組消去得關于的方程
由直線與橢圓相交于兩點,則有,即
得: 由根與系數(shù)的關系得
故 又因為原點到直線的距離,故的面積
令則,所以當且僅當時等號成立,
即時,.
考點:1.待定系數(shù)法求橢圓方程.2.點到直線的距離.3.弦長公式.4.最值的求法.
科目:高中數(shù)學 來源:2014屆山西省高三第一次四校聯(lián)考理數(shù)學卷(解析版) 題型:解答題
設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當面積最大時,求.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一次四校聯(lián)考文數(shù)學卷(解析版) 題型:解答題
設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當面積最大時,求.
查看答案和解析>>
科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題
設橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com