已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若 在時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有;

(3)請(qǐng)將(2)問(wèn)推廣到一般情況,并證明你的結(jié)論.

見(jiàn)解析


解析:

(1)由因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/9/233009.gif" >,

       所以時(shí)恒成立,所以函數(shù)上是增函數(shù).……3分

(2)由(1)知函數(shù)上是增函數(shù),所以當(dāng)時(shí),

成立,……5分

從而,

兩式相加得.……7分

(3)推廣到一般情況為:

,則.……8分

以下用數(shù)學(xué)歸納法證明

(1)當(dāng)時(shí),有(2)已證成立,……9分[來(lái)源:Zxxk.Com]

(2)假設(shè)當(dāng)時(shí)成立,即

那么當(dāng)時(shí),

成立,即當(dāng)時(shí)也成立.

       有(1)(2)可知不等式對(duì)一切時(shí)都成立.……12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省濟(jì)寧市汶上一中高三11月月考文科數(shù)學(xué) 題型:解答題

(20分)已知函數(shù)是在上每一點(diǎn)處均可導(dǎo)的函數(shù),若上恒成立。
(1)①求證:函數(shù)上是增函數(shù);
②當(dāng)時(shí),證明:;
(2)已知不等式時(shí)恒成立,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考文科數(shù)學(xué) 題型:解答題

(20分)已知函數(shù)是在上每一點(diǎn)處均可導(dǎo)的函數(shù),若上恒成立。

(1)①求證:函數(shù)上是增函數(shù);

②當(dāng)時(shí),證明:;

(2)已知不等式時(shí)恒成立,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試12-文科-算法、復(fù)數(shù)、推理與證明 題型:解答題

 已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有;

(3)請(qǐng)將(2)問(wèn)推廣到一般情況,并證明你的結(jié)論(不要求證明).

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試12-理科-算法、復(fù)數(shù)、推理與證明 題型:解答題

 已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有;

(3)請(qǐng)將(2)問(wèn)推廣到一般情況,并證明你的結(jié)論.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案