已知函數f(x)=x3+bx2+ax+d的圖象過點P(0,2),且在點M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0.
(Ⅰ)求函數y=f(x)的解析式;
(Ⅱ)求函數y=f(x)的單調區(qū)間.
考點:
導數的幾何意義;利用導數研究函數的單調性.
分析:
(Ⅰ)求解析式,只需把a,b,d三個字母求出即可.已知點P(0,2)滿足f(x),得到d,又點M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0,可以得到f(﹣1)的值,并且得到f(x)在x=﹣1處的導數為6.
(Ⅱ)利用導數研究函數的單調性即可求出函數的單調區(qū)間.
解答:
解:(Ⅰ)∵f(x)的圖象經過P(0,2),∴d=2,
∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.
∵點M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0
∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,
還可以得到,f(﹣1)=y=1,即點M(﹣1,1)滿足f(x)方程,得到﹣1+b﹣a+2=1②
由①、②聯立得b=a=﹣3
故所求的解析式是f(x)=x3﹣3x2﹣3x+2.
(Ⅱ)f'(x)=3x2﹣6x﹣3.,令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.
解得.當;
當.
故f(x)的單調增區(qū)間為(﹣∞,1﹣),(1+,+∞);單調減區(qū)間為(1﹣,1+)
點評:
本題主要考查了兩個知識點,一是導數的幾何意義,二是利用導數研究函數的單調性,屬于函數這一內容的基本知識,更應該熟練掌握.
科目:高中數學 來源: 題型:
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
查看答案和解析>>
科目:高中數學 來源: 題型:
1 |
3 |
f′(x) |
查看答案和解析>>
科目:高中數學 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數學 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數學 來源:深圳一模 題型:解答題
1 |
3 |
f′(x) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com