【題目】已知函數(shù)g(x)=-x2+2bx-4,若對任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,則實數(shù)b的取值范圍是(  )

A. B. (1,+∞)

C. D.

【答案】A

【解析】依題意,問題等價于f(x1)ming(x2)max.

(x>0),

所以.

f′(x)>0,解得1<x<3,故函數(shù)f(x)的單調遞增區(qū)間是(1,3),同理得f(x)的單調遞減區(qū)間是(0,1)(3,+∞),故在區(qū)間(0,2)上,x=1是函數(shù)f(x)的極小值點,這個極小值點是唯一的,所以f(x1)minf(1)=-.

函數(shù)g(x2)=-+2bx2-4,x2[1,2].

b<1時,g(x2)maxg(1)=2b-5;

1≤b≤2時,g(x2)maxg(b)=b2-4;

b>2時,g(x2)maxg(2)=4b-8.

故問題等價于

解第一個不等式組得b<1,

解第二個不等式組得1≤b

第三個不等式組無解.

綜上所述,b的取值范圍是.

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動直:x+my-2m=0與動直線:mx-y-4m+2=0相交于點M,記動點M的軌跡為曲線C.

(1)求曲線C的方程;

(2)過點P(-1,0)作曲線C的兩條切線,切點分別為A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一隧道內設雙行線公路,其截面由一個長方形和拋物線構成.為保證安全,要求行使車輛頂部(設為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車道總寬度AB為6米,則車輛通過隧道的限制高度是______米(精確到0.1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進行美麗鄉(xiāng)村建設,規(guī)劃在長為10千米的河流OC的一側建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對應的函數(shù)的解析式;

(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有個紅球和個黒球的口袋內任取個球,則互為對立事件是( )

A. 至少有一個黒球與都是黒球B. 至少有一個黒球與都是紅球

C. 至少有一個黒球與至少有個紅球D. 恰有個黒球與恰有個黒球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有5道題,其中3道甲類題,2道乙類題。

(1)若從這5道題中任選2道,求這2道題至少有1道題是乙類題的概率;

(2)若從甲類題、乙類題中各選1道題,求這2道題包括但不包括的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生1000名,經(jīng)調查,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分兩層)從該年級的學生中共抽取100名同學,如果以身高達作為達標的標準,對抽取的100名學生,得到以下列聯(lián)表:

身高達標

身高不達標

總計

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計

100

(Ⅰ)完成上表;

(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下認為經(jīng)常參加體育鍛煉與身高達標有關系(的觀測值精確到0.001)?

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質量狀況的指數(shù),空氣質量按照AQI大小分為六級:050為優(yōu);51100為良;101150為輕度污染;151200為中度污染;201300為重度污染;>300為嚴重污染.一環(huán)保人士記錄了某地2020年某月10天的AQI的莖葉圖如圖所示.

1)利用該樣本估計該地本月空氣質量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共有30天計算)

2)若從樣本中的空氣質量不佳(AQI>100)的這些天中,隨機地抽取兩天深入分析各種污染指標,求該兩天的空氣質量等級恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)用五點法畫出這個函數(shù)在一個周期內的圖像;(必須列表)

2)求它的振幅、周期、初相、對稱軸方程;

3)說明此函數(shù)圖象可由上的圖象經(jīng)過怎樣的變換得到.

查看答案和解析>>

同步練習冊答案