精英家教網 > 高中數學 > 題目詳情

已知拋物線方程為,直線的方程為,在拋物線上有一動點P到y(tǒng)軸的距離為,P到直線的距離為,則的最小值為

A.         B.       C.      D.

 

【答案】

D

【解析】如圖點P到準線的距離等于點P到焦點F的距離,從而P到y(tǒng)軸的距離等于點P到焦點F的距離減1.過焦點F作直線x-y+4=0的垂線,此時d1+d2=|PF|+d2-1最小,∵F(1,0),

則|PF|+d2=,則d1+d2的最小值為,故選D.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當△OAB的面積等
10
時,求k的值.

查看答案和解析>>

科目:高中數學 來源:2010年浙江省教育考試院高考測試樣卷(理) 題型:解答題

   已知拋物線C的頂點在原點, 焦點為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點P, 使得過點P的直

線交C于另一點Q, 滿足PF⊥QF, 且PQ與C

在點P處的切線垂直? 若存在, 求出點P的坐標;

若不存在, 請說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為數學公式,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當△OAB的面積等數學公式時,求k的值.

查看答案和解析>>

科目:高中數學 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點為F,過點K(-1,0)的直l與C相交于A、B兩點,點A關于x軸的對稱點為D。 (1)證明:點F在直線BD上;
(2)設=,求△BDK的內切圓M的方程。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省臺州市天臺縣平橋中學高二(上)12月診斷數學試卷(理科)(解析版) 題型:解答題

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當△OAB的面積等時,求k的值.

查看答案和解析>>

同步練習冊答案