【題目】年北京市進行人口抽樣調(diào)查,隨機抽取了某區(qū)居民人,記錄他們的年齡,將數(shù)據(jù)分成組:,,,…,并整理得到如下頻率分布直方圖:
(Ⅰ)從該區(qū)中隨機抽取一人,估計其年齡不小于的概率;
(Ⅱ)估計該區(qū)居民年齡的中位數(shù)(精確到);
(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,估計該區(qū)居民的平均年齡.
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)用180萬元購買一套新設(shè)備,該套設(shè)備預計平均每年能給企業(yè)帶來100萬元的收入,為了維護設(shè)備的正常運行,第一年需要各種維護費用10萬元,且從第二年開始,每年比上一年所需的維護費用要增加10萬元
(1)求該設(shè)備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關(guān)系;
(2)試計算這套設(shè)備使用多少年,可使年平均利潤最大?年平均利潤最大為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔仔細算相還”,其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為測得河對岸塔的高,先在河岸上選一點,使在塔底的正東方向上,測得點的仰角為60°,再由點沿北偏東15°方向走到位置,測得,則塔的高是(單位:)( )
A. B. C. D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為數(shù)列的前項和,,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個,則正實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在某學院大一年級名學生中進行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占.這名學生中南方學生共人。南方學生中有人不喜歡甜品.
(1)完成下列列聯(lián)表:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | |||
北方學生 | |||
合計 |
(2)根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(3)已知在被調(diào)查的南方學生中有名數(shù)學系的學生,其中名不喜歡甜品;有名物理系的學生,其中名不喜歡甜品.現(xiàn)從這兩個系的學生中,各隨機抽取人,記抽出的人中不喜歡甜品的人數(shù)為,求的分布列和數(shù)學期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )
A. 函數(shù)的周期為
B. 函數(shù)在上單調(diào)遞增
C. 函數(shù)的圖象關(guān)于點對稱
D. 把函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實現(xiàn)手機支付.有關(guān)部門為了了解各年齡段的人使用手機支付的情況,隨機調(diào)查了50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
手機支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年齡在的人稱為中青年,年齡在的人稱為中老年,請根據(jù)上表完成以下列聯(lián)表;并判斷是否可以在犯錯誤的概率不超過0.05的前提下,認為使用手機支付與年齡(中青年、中老年)有關(guān)系?
手機支付 | 未使用手機支付 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
(2)若從年齡在的被調(diào)查中隨機選取2人進行調(diào)查,記選中的2人中,使用手機支付的人數(shù)為,求的分布列及數(shù)學期望.
參考公式:,其中.
獨立性檢驗臨界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com