設(shè)橢圓D:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足且AB⊥AF2

   (I)若過(guò)A、B、F2三點(diǎn)的圓C恰好與直線l相切,求圓C方程及橢圓D的方程;

   (II)若過(guò)點(diǎn)T(3,0)的直線與橢圓D相交于兩點(diǎn)M、N,設(shè)P為橢圓上一點(diǎn),且滿足

    (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本題滿分15分) 設(shè)橢圓C1

的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA 

的中點(diǎn)為BO為坐標(biāo)原點(diǎn)),如圖.若拋物線C2

y軸的交點(diǎn)為B,且經(jīng)過(guò)F1,F2點(diǎn).

(Ⅰ)求橢圓C1的方程;

(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線C2的切線交橢圓C1PQ兩點(diǎn),求面積的最大值.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期周練數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓C1的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn))。如圖,若拋物線C2與y軸的交點(diǎn)為B,且經(jīng)過(guò)F1,F(xiàn)2兩點(diǎn)。

1. 求拋物線C2的方程;

2.設(shè)M,N為拋物線C2上的動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線C2的切線交橢圓C1于點(diǎn)P、Q兩點(diǎn),求△MPQ面積的最大值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2010-2011學(xué)年四川省高三四月月考文科數(shù)學(xué)卷 題型:解答題

如圖所示,設(shè)橢圓C1:的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖。若拋物線C2:與y軸的交點(diǎn)為B,且經(jīng)過(guò)F1,F(xiàn)2點(diǎn)

(1)求橢圓C1的方程;

(2)設(shè)M),N為拋物線C2上的一動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求面積的最大值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓D:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足且AB⊥AF2

   (I)求橢圓D的離心率:

   (II)若過(guò)A、B、F2三點(diǎn)的圓C恰好與直線l相切,求圓C方程及橢圓D的方程;

   (III)若過(guò)點(diǎn)T(3,0)的直線與橢圓D相交于兩點(diǎn)M、N,設(shè)P為橢圓上一點(diǎn),且滿足

    (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案