(本小題滿分12分)
如圖,在四棱錐中,底面ABCD為菱形,底面,的中點,的中點,求證:
(1)平面;
(2).
證明:(1)由于,所以又由,所以,又,
所以
(2)取的中點,連CG、EG,由E為PA中點 
所以,又為菱形.所以 四邊形EFCG為 又平面PCD, CG平面PCD
平面
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點.
(Ⅰ)求證:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在側(cè)棱AA­1上是否存在點P,使得
CP⊥面BDC1?并證明你的結(jié)論.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的邊長為4,CD是AB邊上的高,E、F分別是AC和BC的中點,現(xiàn)將沿CD翻折成直二面角,(1)求證:;(2)若點P在線段BC上,且BC=3BP,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,四棱錐P—ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(Ⅰ)求證:BE//平面PAD;
(Ⅱ)若BE⊥平面PCD。
(i)求異面直線PD與BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l4分)如圖,邊長為的正方體中,的中點,在線段上,且
(1)求異面直線所成角的余弦值;
(2)證明:
(3)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、FG分別是PA、PBBC的中點.
(I)求證:EF平面PAD;
(II)求平面EFG與平面ABCD所成銳二面角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分).如圖所示,四棱錐PABCD的底面積ABCD是邊長為1的菱形,
BCD=60°,ECD的中點,PA⊥底面積ABCD,PA.
(Ⅰ)證明:平面PBE⊥平面PAB
(Ⅱ) 過PC中點F作FH//平面PBD, FH交平面ABCD 于H點,判定H點位于平面ABCD的那個具體位置?(無須證明)
(Ⅲ)求二面角ABEP的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,正三棱柱所有棱長都是是棱的中點,是棱的中點,于點
(1)求證:;
(2)求二面角的大小(用反三角函數(shù)表示);
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱中, .
(1)求證: ;
(2)請在線段上確定一點P,使直線與平面所成角的正弦等于.

查看答案和解析>>

同步練習(xí)冊答案