如圖,已知曲線(xiàn)C:
x2
a2
+y2=1
(a>0),曲線(xiàn)C與x軸相交于A、B兩點(diǎn),直線(xiàn)l過(guò)點(diǎn)B且與x軸垂直,點(diǎn)S是直線(xiàn)l上異于點(diǎn)B的任意一點(diǎn),線(xiàn)段SA與曲線(xiàn)C交于點(diǎn)T,線(xiàn)段TB與以線(xiàn)段SB為直徑的圓相交于點(diǎn)M.
(I)若點(diǎn)T與點(diǎn)M重合,求
AT
AS
的值;
(II)若點(diǎn)O、M、S三點(diǎn)共線(xiàn),求曲線(xiàn)C的方程.
分析:(I)設(shè)T(x0,y0),S(a,y1),由點(diǎn)A,T,S共線(xiàn),確定直線(xiàn)方程,求得S的坐標(biāo),利用點(diǎn)T與點(diǎn)M重合時(shí),有BT⊥AS,kSA•kBT=-1,得a的值,再利用
AT
AS
=AB2,即可求得結(jié)論;
(II)以線(xiàn)段SB為直徑的圓相交于點(diǎn)M點(diǎn),又O、M、S三點(diǎn)共線(xiàn),知BM⊥OS,∴BT⊥OS,由此可求a的值,從而可得曲線(xiàn)C的方程.
解答:解:(I)設(shè)T(x0,y0),S(a,y1),則
x02
a2
+y02=1
,所以y02=1-
x02
a2

由點(diǎn)A,T,S共線(xiàn)有:
y0-0
x0+a
=
y1-0
a+a
,得:y1=
2a
x0+a
y0
,即S(a,
2a
x0+a
y0

當(dāng)點(diǎn)T與點(diǎn)M重合時(shí),有BT⊥AS,kSA•kBT=
y0
x0+a
×
y0
x0-a
=-1,得a=1.
AT
AS
=AB2=(2a)2=4;
(II)以線(xiàn)段SB為直徑的圓相交于點(diǎn)M點(diǎn),又O、M、S三點(diǎn)共線(xiàn),知BM⊥OS,∴BT⊥OS
∴kSO•kBT=
2a
x0+a
y0
a
×
y0
x0-a
=-1,∴a2=2
∴所求曲線(xiàn)C的方程為
x2
2
+y2=1
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查向量知識(shí)的運(yùn)用,解題的關(guān)鍵是確定a的值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線(xiàn)C:y=
1
x
,Cn:y=
1
x+2-n
(n∈N*)
.從C上的點(diǎn)Qn(xn,yn)作x軸的垂線(xiàn),交Cn于點(diǎn)Pn,再?gòu)腜n作y軸的垂線(xiàn),交C于點(diǎn)Qn+1(xn+1,yn+1).設(shè)x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)△PiQiQi+1(i∈N*)和面積為Si,記f(n)=
n
i=1
Si
,求證f(n)<
1
6
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知曲線(xiàn)C:y=
1
x
在點(diǎn)P(1,1)處的切線(xiàn)與x軸交于點(diǎn)Q1,過(guò)點(diǎn)Q1作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)P1,曲線(xiàn)C在點(diǎn)P1處的切線(xiàn)與x軸交于點(diǎn)Q2,過(guò)點(diǎn)Q2作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)P2,…,依次得到一系列點(diǎn)P1、P2、…、Pn,設(shè)點(diǎn)Pn的坐標(biāo)為(xn,yn)(n∈N*).
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)求三角形OPnPn+1的面積S△OPnPn+1
(Ⅲ)設(shè)直線(xiàn)OPn的斜率為kn,求數(shù)列{nkn}的前n項(xiàng)和Sn,并證明Sn
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知曲線(xiàn)C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).從C上的點(diǎn)Qn(xn,yn)作x軸的垂線(xiàn),交Cn于點(diǎn)Pn,再過(guò)點(diǎn)Pn作y軸的垂線(xiàn),交C于點(diǎn)Qn+1(xn+1,yn+1)設(shè),x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求點(diǎn)Q1、Q2的坐標(biāo);
(2)求數(shù)列{an} 的通項(xiàng)公式;
(3)記數(shù)列{an•yn+1} 的前n項(xiàng)和為Sn,求證sn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:已知曲線(xiàn)C:在點(diǎn)P(1,1)處的切線(xiàn)與x軸交于點(diǎn)Q1,再過(guò)Q1點(diǎn)作x軸的垂線(xiàn)交曲線(xiàn)C于點(diǎn)P1,再過(guò)P1作C的切線(xiàn)與x軸交于點(diǎn)Q2,依次重復(fù)下去,過(guò)Pn(xn,yn)作C的切線(xiàn)與x軸交于點(diǎn)Qn(xn+1,O).
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)求△OPnPn+1的面積;
(3)設(shè)直線(xiàn)OPn的斜率為kn,求數(shù)列nkn的前n項(xiàng)和Sn,并證明Sn
79

查看答案和解析>>

同步練習(xí)冊(cè)答案