已知△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周長的最大值.
(1)∵b2+c2=a2+bc,∴a2=b2+c2-bc,
結合余弦定理知cosA=
b2+c2-a2
2bc
=
b2+c2-(b2+c2-bc)  
2bc
=
1
2
,
又A∈(0,π),∴A=
π
3
,
∴2sinBcosC-sin(B-C)=sinBcosC+cosBsinC
=sin(B+C)=sin[π-A]=sinA=
3
2

(2)由a=2,結合正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
2
3
2
=
4
3
3
,
∴b=
4
3
3
sinB,c=
4
3
3
sinC,
則a+b+c=2+
4
3
3
sinB+
4
3
3
sinC
=2+
4
3
3
sinB+
4
3
3
sin(
3
-B)
=2+2
3
sinB+2cosB=2+4sin(B+
π
6
),
可知周長的最大值為6.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點的A、B、C及平面內(nèi)一點P滿足
PA
+
PB
+
PC
=
AB
,下列結論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A、B、C及平面內(nèi)一點P,若
PA
+
PB
+
PC
=
AB
,則點P與△ABC的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點ABC及平面內(nèi)一點P滿足:
PA
+
PB
+
PC
=
0
,若實數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點M(2,1)引一條弦,使得弦被M點平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A,B,C及平面內(nèi)一點P滿足:
PA
+
PB
+
PC
=
0
,若實數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習冊答案