【題目】已知函數(shù)f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個零點,求實數(shù)a的取值范圍.

【答案】
(1)解:f(x)=sin2x+cos2x﹣3cos2x

=sin2x﹣2cos2x=sin2x﹣cos2x﹣1

=

因為 ,

所以

即增區(qū)間為


(2)解:令f(x)=0,即

解得 ,

當k1=0或1時,

當k2=0或1時,

因為函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個零點,它們是 , ,

所以


【解析】(1)利用兩角和與差的三角函數(shù)以及二倍角公式化簡f(x)為: ,利用正弦函數(shù)的單調增區(qū)間求解函數(shù)的單調增區(qū)間即可;(2)令f(x)=0,求出函數(shù)的零點,通過函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個零點,判斷零點的值,然后求解a的范圍.
【考點精析】解答此題的關鍵在于理解正弦函數(shù)的單調性的相關知識,掌握正弦函數(shù)的單調性:在上是增函數(shù);在上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x2<9},B={x|(x﹣2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為A∪B,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有A、B兩個景點,位于一條小路(直道)的同側,分別距小路 km和2 km,且A、B景點間相距2 km,今欲在該小路上設一觀景點,使兩景點在同時進入視線時有最佳觀賞和拍攝效果,則觀景點應設于.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,A(2,-1),B(4,3),C(3,-2).
(1)求BC邊上的高所在直線的一般式方程;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形ABCD(AB>AD)的周長為12,若將它關于對角線AC折起后,使邊AB與CD交于點P(如圖所示),則△ADP面積的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1=a ﹣an+1,則M= + +…+ 的整數(shù)部分是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了對一種新產(chǎn)品進行合理定價,將該產(chǎn)品按亊先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x(元)

4

5

6

7

8

9

銷量V(件)

90

84

83

80

75

68

由表中數(shù)據(jù).求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線右上方的概率為

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質量等完全相同.
(1)采用不放回抽樣,先后取兩次,每次隨機取一個球,求恰好取到1個紅球,1個白球的概率;
(2)采用放回抽樣,每次隨機取一球,連續(xù)取5次,求恰有兩次取到紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: ,F(xiàn)1 , F2分別為左右焦點,在橢圓C上滿足條件 的點A有且只有兩個
(1)求橢圓C的方程
(2)若過點F2的兩條相互垂直的直線l1與l2 , 直線l1與曲線y2=4x交于兩點M、N,直線l2與橢圓C交于兩點P、Q,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

同步練習冊答案