已知命題p:在區(qū)間(0,+∞)上是減函數(shù),命題q:不等式(a-2)x2+2(a-2)x-4≥0的解集為空集,若p或q是真命題,求實數(shù)a的取值范圍.
【答案】分析:先求出命題p,q為真命題是的等價條件,然后利用p或q為真命題,求實數(shù)a的取值范圍.
解答:解:要使在區(qū)間(0,+∞)上是減函數(shù),則1-a>0,即a<1.所以p:a<1.
不等式(a-2)x2+2(a-2)x-4≥0的解集為空集,
所以當a=2時,不等式等價為-4≥0,此時不成立,解集為空集,滿足條件.
當a≠2時,要使不等式(a-2)x2+2(a-2)x-4≥0的解集為空集,即不等式(a-2)x2+2(a-2)x-4<0恒成立,
所以必有,即,所以,所以1<a<2.
綜上1<a≤2,即q:1<a≤2.
若p或q是真命題,則p,q至少有一個是真命題.
當p,q同時為假命題時,有,解得a=1或a>2.
所以p,q至少有一個是真命題時有a≠1且a≤2.
所以實數(shù)a的取值范圍a≤2且a≠1.
點評:本題主要考查復合命題的真假判斷和應用,要求熟練掌握復合命題與簡單命題真假之間的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:在x∈[1,2]內(nèi),不等式x2+ax-2>0恒成立;命題q:函數(shù)f(x)=log
13
(x2-2ax+3a)
是區(qū)間[1,+∞)上的減函數(shù).若命題“p?q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:在區(qū)間[-1,1]上至少存在一個實數(shù)x,使不等式x2+ax-2>0成立;命題q:方程sinx•cosx=a+2,x∈(0,
34
π
]有兩個解.若命題“p或q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省濰坊市四縣高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知命題p:在x∈[1,2]內(nèi),不等式x2+ax-2>0恒成立;命題q:函數(shù)是區(qū)間[1,+∞)上的減函數(shù).若命題“p?q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:在區(qū)間上是減函數(shù),命題q:不等式的解集為R,若命題為真命題“”為假命題,則實數(shù)m的取值范圍是         。

查看答案和解析>>

同步練習冊答案