已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+.
(1)求b1,b2,b3的值.
(2)設(shè)cn=bnbn+1,Sn為數(shù)列{cn}的前n項(xiàng)和,求證: Sn≥17n.
(3)求證:|b2n-bn|<·.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在某兩個(gè)正數(shù)x,y之間,若插入一個(gè)數(shù)a,使x,a,y成等差數(shù)列,若插入兩個(gè)數(shù)b,c,使x,b,c,y成等比數(shù)列,求證:(a+1)2≥(b+1)(c+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+b2+c2+m-1=0.
(1)求證:a2+b2+c2≥.
(2)求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)求不等式的解集;
(2)若關(guān)于的不等式在上無解,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=-2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>-1,且當(dāng)x∈時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)=x2+2x.
(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對(duì)?x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com