(本題滿分12分)
已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和Sn=n2
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若Tn=,求證:Tn<
(3)若cn=-,T/n=c1+c2+…+cn,求使T/n+n2n+1>125成立的正整數(shù)n的最小值

(1)∵2a2n+1+3∴(an+1+2an)(2an+1-an)=0,∵{an}的各項(xiàng)均為正數(shù),∴2an+1-an="0 " 即:an+1=,∴{an}是以為公比的等比數(shù)列,由a2+a4=2a3+得。
a1=∴an=(又由Sn=n2得bn=2n-1
(2)Tn=∴Tn<
(3)由cn=-,得cn=-n•2n
得T/=(1-n)2n+1-2, 解答n≥6.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、所對的邊分別為、.,且.(1)求的大。唬2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,是它的左,右焦點(diǎn).

(1)若,且,,求、的坐標(biāo);

(2)在(1)的條件下,過動點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案