如圖:在四面體中,平面
,,,
的中點;
(1)求證;
(2)求直線與平面所成的角。
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖在邊長為1正方體中,以正方體的三條棱所在直線為軸建立空間直角坐標系,
(I)若點在線段上,且滿足,試寫出點的坐標并寫出關于縱坐標軸軸的對稱點的坐標;
(Ⅱ)在線段上找一點,使得點到點的距離最小,求出點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分6分)
(如圖)在底面半徑為2母線長為4的圓錐中內(nèi)接一個高為的圓柱,求圓柱的表面積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=
(1)求證:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
已知四棱錐P—ABCD的底面為直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點。
(I)求AC與PB所成角的余弦值;
(II)求面AMC與面BMC所成二面角的余弦值的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知三棱錐PABC中,PA⊥平面ABC,
ABAC,PAACABNAB上一點,
AB=4AN,M,S分別為PBBC的中點.
(I)證明:CMSN;
(II)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,四棱錐P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=
(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐底面
,分別在棱上,且 
(Ⅰ)求證:平面
(Ⅱ)當的中點時,求與平面所成的角的大小;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖(1)在正方形中,E、F分別是邊、的中點,沿SE、SF及EF把這個正方形折成一個幾何體如圖(2),使三點重合于G, 下面結論成立的是(    )
A.B.
C.D.
     

查看答案和解析>>

同步練習冊答案