已知條件p:A={x∈R|x2+ax+1≤0},條件q:B={x∈R|x2-3x+2≤0}.若¬q是¬p的充分不必要條件,求實(shí)數(shù)a的取值范圍.
分析:¬q是¬p的充分不必要條件,根據(jù)逆否命題與原命題的等價(jià)性,得p是q的充分不必要條件,由此可得集合A是集合B的真子集.將q對應(yīng)的不等式分別解出,再對p中的集合A進(jìn)行討論,解關(guān)于a不等式即可得到本題的答案.
解答:解:∵條件q:B={x∈R|x2-3x+2≤0},
∴解不等式x2-3x+2≤0,得1≤x≤2,得B=[1,2]
∵¬q是¬p的充分不必要條件,
∴根據(jù)逆否命題與原命題的等價(jià)性,得p是q的充分不必要條件
因此,A={x∈R|x2+ax+1≤0}?B=[1,2]
①當(dāng)A=∅時(shí),a2-4<0,解之得-2<a<2;
②當(dāng)A≠∅時(shí),a2-4≥0,得a≥2或a≤-2
∵x2+ax+1≤0的解集為A={x|
-a-
a2-4
2
≤x≤
-a+
a2-4
2
}
∴結(jié)合A?B,可得1≤
-a-
a2-4
2
-a+
a2-4
2
≤2,(兩個(gè)不等式的等號不同時(shí)成立)
解之可得-
5
2
≤a≤-2
綜上所述,可得實(shí)數(shù)a的取值范圍為-
5
2
≤a<2.
即若¬q是¬p的充分不必要條件,實(shí)數(shù)a的取值范圍是[-
5
2
,2).
點(diǎn)評:本題給出兩個(gè)不等式對應(yīng)的條件,叫我們判斷充分必要性,著重考查了一元二次不等式的解法和充要條件的判斷等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:A={x∈R|x2+ax+1≤0},條件q:B={x∈R|x2-3x+2≤0}.若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:A=x∈R||2x-1|≤a(a>0),條件q:B=x∈R|x2-3x-4≤0.若p是q的充分但不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:A={x|2a≤x≤a2+1},條件q:B={x|x2-x-2≤0},若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:A={x|2a≤x≤a2+1},條件q:B={x|x2-3(a+1)x+2(3a+1)≤0}.若條件p是條件q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案