4 |
25 |
1-t2 |
1+t2 |
2t |
1+t2 |
1 |
25 |
A、θ=
| ||
B、θ=
| ||
C、θ=
| ||
D、θ與t的取值有關(guān) |
|
4 |
25 |
2 |
5 |
1 |
5 |
4 |
5 |
π |
6 |
π |
3 |
π |
3 |
科目:高中數(shù)學(xué) 來源: 題型:
20 |
3 |
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為=1(a>b>0),C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013年山東濟寧泗水一中高二12月質(zhì)量檢測理科數(shù)學(xué)試卷(帶解析) 題型:解答題
(本小題滿分12分)
已知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,試求:
(1)直線AB的方程;(2)橢圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東濟寧泗水一中高二12月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,試求:
(1)直線AB的方程;(2)橢圓C2的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com