(本小題滿分13分)橢圓C的中心為坐標(biāo)原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

(1)
(2)(-1,-)∪(,1)

所求平面與直線所成角的正弦值為.…………………………12分
即所求m的取值范圍為(-1,-)∪(,1)    ………………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率e是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知直線與橢圓相交于兩點,是線段上的一點,,且點M在直線
(1)求橢圓的離心率;
(2)若橢圓的焦點關(guān)于直線的對稱點在單位圓上,求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)已知橢圓C的方程是,直線過右焦點,與橢圓交于兩點.
(Ⅰ)當(dāng)直線的傾斜角為時,求線段的長度;
(Ⅱ)當(dāng)以線段為直徑的圓過原點時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

14分)已知橢圓中心在原點,焦點在x軸上,一個頂點為A(0,-1),且其右焦點到直線x-y+=0的距離為3.(I)求橢圓的方程;
(II)是否存在斜率為k(k≠0)的直線l,使l與已知橢圓交于不同的兩點M、N,
且|AN|=|AM|?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距為 (   )
A.5B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若(應(yīng)為PB),則離心率為
A、         B、         C、           D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一橢圓中以焦點為直徑兩端點的圓,恰好過短軸的兩頂點,則此橢圓的離心率等于  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為e,焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點.設(shè)P為兩條曲線的一個交點,若,則e的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案