【題目】已知實(shí)數(shù)ab,cd滿足a+b+c+d=3,a2+2b2+4c2+4d2=5a的最大值為(

A.1 B.2 C.3 D..4

【答案】B

【解析】

試題分析:根據(jù)柯西不等式當(dāng)n=3時(shí)的不等式:(++)(++x1y1+x2y2+x3y32,得到(2b2+4c2+4d2)(++b+c+d2.從而得到關(guān)于a不等式:5﹣a23﹣a2,解之得1≤a≤2,最后根據(jù)柯西不等式取等號(hào)的條件,找到當(dāng)b=,c=d=時(shí),a有最大值2

解:根據(jù)柯西不等式,得(2b2+4c2+4d2)(++b+c+d2

當(dāng)且僅當(dāng)2b=4c=4d時(shí),等號(hào)成立

a+b+c+d=3a2+2b2+4c2+4d2=5

5﹣a23﹣a2,解之得1≤a≤2,

當(dāng)且僅當(dāng)2b=4c=4db+c+d=1時(shí),即當(dāng)b=,c=d=時(shí),a有最大值2

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列,前n項(xiàng)和為,是首項(xiàng)為2的等比數(shù)列,且公比大于0,,,

1的通項(xiàng)公式;

2求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線lx=4的距離是它到點(diǎn)N(1,0)的距離的2倍.

(1)求動(dòng)點(diǎn)M的軌跡C的方程;

(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若APB的中點(diǎn),求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是橢圓的一個(gè)頂點(diǎn), 的長(zhǎng)軸是圓的直徑. 是過(guò)點(diǎn)且互相垂直的兩條直線,其中交圓于兩點(diǎn)交橢圓于另一點(diǎn).

(1)求橢圓的方程;

2)求面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2 ,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=

(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O﹣ADE的體積;
(3)求證:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )

A. yx具有正的線性相關(guān)關(guān)系

B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值

C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為 ,數(shù)列滿足點(diǎn)在直線上.

(1)求數(shù)列, 的通項(xiàng), ;

(2)令,求數(shù)列的前項(xiàng)和;

(3)若,求對(duì)所有的正整數(shù)都有成立的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足, ,其中, 為非零常數(shù).

(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是公差不等于零的等差數(shù)列.

①求實(shí)數(shù), 的值;

②數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,從中取不同的四項(xiàng)按從小到大排列組成四項(xiàng)子數(shù)列.試問(wèn):是否存在首項(xiàng)為的四項(xiàng)子數(shù)列,使得該子數(shù)列中的所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案