已知平面上一定點C(2,O)和直線l:x=8,P為該平面上一動點,作PQ⊥l,垂足為Q,且
(1)問點P在什么曲線上?并求出該曲線的方程;
(2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求的最大值.
【答案】分析:(1)根據(jù)平面向量數(shù)量積的運算性質(zhì),得42=2.設P(x,y),則Q(8,y),運用距離公式化簡可得3x2+4y2=48,整理得+=1,由此可得點P的軌跡是以(±2,0)為焦點的橢圓;
(2)根據(jù)題意,得|NE|=|NF|=1且=-,由此化簡得=-1,根據(jù)橢圓方程與兩點的距離公式,求出當P的縱坐標為-3時的最大值為20,由此即得=-1的最大值為19.
解答:解:(1)設P的坐標為P(x,y),則Q(8,y)
,得:42=2
∴4[(x-2)2+y2]=[(x-8)2+(y-y)2],化簡得3x2+4y2=48,
∴點P的軌跡方程為+=1,此曲線是以(±2,0)為焦點的橢圓;
(2)∵EF為圓N的直徑,∴|NE|=|NF|=1,且=-
=()•()=()•()=-1
∵點P為橢圓+=1上的點,滿足x2=16-
∵N(1,0),∴=x2+(y-1)2=-(y+3)2+20
∵橢圓+=1上點P縱坐標滿足 y∈[-2,2]
∴當y=-3時,的最大值為20,故=-1的最大值等于19.
點評:本題給出動點P的軌跡,求其方程并研究向量數(shù)量積的最大值,著重考查了向量的數(shù)量積、橢圓的標準方程與簡單性質(zhì)和直線與圓等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面上一定點C(4,0)和一定直線l:x=1,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)問:點P在什么曲線上?并求出該曲線的方程;
(2)設直線l:y=kx+1與(1)中的曲線交于不同的兩點A、B,是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過點D(0,-2)?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上一定點C(-1,0)和一直線l:x=-4,P(x,y)為該平面上一動點,作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)求點P的軌跡方程;
(2)點O是坐標原點,過點C的直線與點P的軌跡交于A,B兩點,求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山二模)已知平面上一定點C(-1,0)和一定直線l:x=-4.P為該平面上一動點,作PQ⊥l,垂足為Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)問點P在什么曲線上,并求出該曲線方程;
(2)點O是坐標原點,A、B兩點在點P的軌跡上,若
OA
OB
=(1+λ)
OC
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上一定點C(2,O)和直線l:x=8,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
PC
+
1
2
PQ
)•(
PC
-
1
2
PQ
)=0

(1)問點P在什么曲線上?并求出該曲線的方程;
(2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上一定點C(4,0)和一定直線為該平面上一動點,作,垂足為Q,且.

   (1)問點P在什么曲線上?并求出該曲線的方程;

   (2)設直線與(1)中的曲線交于不同的兩點A、B,是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過點D(0,-2)?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案