已知二次函數(shù),且不等式的解集為.
(1)方程有兩個(gè)相等的實(shí)根,求的解析式;
(2)的最小值不大于,求實(shí)數(shù)的取值范圍;
(3)如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).
(1);(2)實(shí)數(shù)的取值范圍是;(3)詳見(jiàn)解析.
解析試題分析:(1)根據(jù)不等式的解集為得到、為方程的實(shí)根,結(jié)合韋達(dá)定理確定、、之間的等量關(guān)系以及這一條件,然后利用有兩個(gè)相等的實(shí)根得到,從而求出、、的值,最終得到函數(shù)的解析式;(2)在的條件下,利用二次函數(shù)的最值公式求二次函數(shù)的最小值,然后利用已知條件列有關(guān)參數(shù)的不等式,進(jìn)而求解實(shí)數(shù);(3)先求出函數(shù)的解析式,對(duì)首項(xiàng)系數(shù)為零與不為零進(jìn)行兩種情況的分類(lèi)討論,在首項(xiàng)系數(shù)為零的前提下,直接將代入函數(shù)解析式,求處對(duì)應(yīng)的零點(diǎn);在首項(xiàng)系數(shù)不為零的前提下,求出,
對(duì)的符號(hào)進(jìn)行三中情況討論,從而確定函數(shù)的零點(diǎn)個(gè)數(shù),并求出相應(yīng)的零點(diǎn).
試題解析:(1)由于不等式的解集為,
即不等式的解集為,
故、為方程的兩根,且,
由韋達(dá)定理得,,
由于方程有兩個(gè)相等的實(shí)根,即方程有兩個(gè)相等的實(shí)根,
則,
由于,解得,,,
所以;
(2)由題意知,,,,由于,則有,
解得,由于,所以,即實(shí)數(shù)的取值范圍是;
(3)(※)
①當(dāng)時(shí),方程為,方程有唯一實(shí)根,
即函數(shù)有唯一零點(diǎn);
②當(dāng)時(shí),,
方程(※)有一解,令,
得或,,即或,
(i)當(dāng)時(shí),((負(fù)根舍去)),
函數(shù)有唯一零點(diǎn);
(ii)當(dāng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克)滿(mǎn)足關(guān)系式,其中,為常數(shù).已知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)求函數(shù)的最小值;
(II)對(duì)于函數(shù)和定義域內(nèi)的任意實(shí)數(shù),若存在常數(shù),使得不等式和都成立,則稱(chēng)直線(xiàn)是函數(shù)和的“分界線(xiàn)”.
設(shè)函數(shù),,試問(wèn)函數(shù)和是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程.若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
漁場(chǎng)中魚(yú)群的最大養(yǎng)殖量是m噸,為保證魚(yú)群的生長(zhǎng)空間,實(shí)際養(yǎng)殖量不能達(dá)到最大養(yǎng)殖量,必須留出適當(dāng)?shù)目臻e量。已知魚(yú)群的年增長(zhǎng)量y噸和實(shí)際養(yǎng)殖量x噸與空閑率乘積成正比,比例系數(shù)為k(k>0).
寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,指出這個(gè)函數(shù)的定義域;
求魚(yú)群年增長(zhǎng)量的最大值;
當(dāng)魚(yú)群的年增長(zhǎng)量達(dá)到最大值時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(Ⅰ)已知函數(shù),若存在,使得,則稱(chēng)是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(Ⅱ) 若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線(xiàn)是線(xiàn)段的垂直平分線(xiàn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某單位設(shè)計(jì)的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識(shí),對(duì)于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時(shí)間內(nèi),在單位面積上通過(guò)每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量(結(jié)果用,及表示);
(2)為使雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計(jì)的大小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用為C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿(mǎn)足關(guān)系:C(x)=(0x10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com