已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與一3的大小,并說(shuō)明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),.

(1);(2);(3)證明過(guò)程詳見解析.

解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值和最值、利用導(dǎo)數(shù)求曲線的切線方程等數(shù)學(xué)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),先對(duì)求導(dǎo),將代入到中得到切線的斜率,將代入到中得到切點(diǎn)的縱坐標(biāo),最后利用點(diǎn)斜式,直接寫出切線方程;第二問(wèn),對(duì)求導(dǎo),由于有2個(gè)不同的極值點(diǎn),所以有2個(gè)不同的根,即有兩個(gè)不同的根,所以,可以解出a的取值范圍,所以根據(jù)的單調(diào)性判斷出為極小值,通過(guò)函數(shù)的單調(diào)性求最值,從而比較大小;第三問(wèn),用分析法證明分析出只須證,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性證明,同理再證明,最后利用不等式的傳遞性得到所證不等式.
試題解析:(1)易知,∴ 
∴所求的切線方程為,即 4分
(2)易知,
有兩個(gè)不同的極值點(diǎn)
有兩個(gè)不同的根
 解得               6分
遞增,遞減,遞增
的極小值
又∵

,∴遞減
,故                        9分
(3)先證明:當(dāng)時(shí),
即證:
只需證:
事實(shí)上,設(shè)
易得,∴內(nèi)遞增
  即原式成立                        12分
同理可以證明當(dāng)時(shí),   
綜上當(dāng)時(shí),.             14分
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的極值和最值;3.利用導(dǎo)數(shù)求曲線的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(2)若函數(shù)處取得極小值,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè).
(1)當(dāng)取到極值,求的值;
(2)當(dāng)滿足什么條件時(shí),在區(qū)間上有單調(diào)遞增的區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)設(shè),,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處取得極值2
(1)求函數(shù)的表達(dá)式;
(2)當(dāng)滿足什么條件時(shí),函數(shù)在區(qū)間上單調(diào)遞增?
(3)若圖象上任意一點(diǎn),直線與的圖象相切于點(diǎn)P,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)、為常數(shù)),在時(shí)取得極值.
(1)求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)當(dāng)時(shí),試比較的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某一運(yùn)動(dòng)物體,在x(s)時(shí)離出發(fā)點(diǎn)的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時(shí)速度;
(3)經(jīng)過(guò)多少時(shí)間該物體的運(yùn)動(dòng)速度達(dá)到14m/s?

查看答案和解析>>

同步練習(xí)冊(cè)答案