已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-9x+a<0的解集的子集,則實數(shù)a的取值范圍是
 
分析:先解出不等式組
x2-4x+3<0
x2-6x+8<0
的解集,再題設中的包含關系得出參數(shù)a的不等式組解出其范圍.
解答:解:由
x2-4x+3<0
x2-6x+8<0
得2<x<3.
不等式2x2-9x+a<0相應的函數(shù)開口向上,令f(x)=2x2-9x+a,
故欲使不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-9x+a<0的解集的子集,
只需
f(2)≤0
f(3)≤0
?
a≤9.
故應填(-∞,9]
點評:本題是一元二次不等式的解法以及已知一元二次不等式的解集求參數(shù),綜合考查了一元二次函數(shù)的圖象與性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知D是由不等式組
x-2y≥0
x+3y≥0
,所確定的平面區(qū)域,則圓x2+y2=4在區(qū)域D內的弧長為(  )
A、
π
4
B、
π
2
C、
4
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)F(x)滿足F(x+y)=F(x)+F(y),當x>0時,F(xiàn)(x)<0,且對任意的x∈[0,1],不等式組
F(2kx-x2)<F(k-4)
F(x2-kx)<F(k-3)
均成立,
(1)求證:函數(shù)F(x)在R上為減函數(shù)
(2)求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)m、n滿足不等式組
2m+n≤4
m-n≤2
m+n≤3
m≥0
,則關于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2-6x+5,則不等式組
f(x)+f(y)≤0
f(x)-f(y)≥0.
所表示的平面區(qū)域的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知D是由不等式組
x-y≥0
x+y≥0
所確定的平面區(qū)域,則圓x2+y2=4在區(qū)域D內的面積為( 。

查看答案和解析>>

同步練習冊答案