甲、乙兩人進(jìn)行兩種游戲,兩種游戲的規(guī)則由下表給出:(球的大小都相同)
游戲1游戲2
裁判的口袋中有4個(gè)白球和5個(gè)紅球甲的口袋中有6個(gè)白球和2個(gè)紅球
乙的口袋中有3個(gè)白球和5個(gè)紅球
由裁判摸兩次,每次摸一個(gè),記下顏色后放回每人都從自己的口袋中摸一個(gè)球
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
(1)分別求出在游1中甲、乙獲勝的概率;
(2)求出在游戲2中甲獲勝的概率,并說(shuō)明這兩個(gè)游戲哪個(gè)游戲更公平.
【答案】分析:(1)在游戲1中,每次摸出的球是白球的概率為,每次摸出的球是紅球的概率為,可得甲獲勝的概率為+,用1減去甲獲勝的概率即得乙獲勝的概率.
(2)甲乙二人摸出的都是白球的概率為,甲乙二人摸出的都是紅球的概率,把這兩個(gè)概率相加即得甲勝的概率.比較2個(gè)游戲中甲獲勝的概率值,概率更接近的游戲更公平.
解答:解:(1)在游戲1中,每次摸出的球是白球的概率為,每次摸出的球是紅球的概率為,
故甲獲勝的概率為+=,乙獲勝的概率為1-=
(2)甲乙二人摸出的都是白球的概率為=,甲乙二人摸出的都是紅球的概率=
故甲勝的概率為 +=
由于更接近,故游戲1更公平.
點(diǎn)評(píng):本題主要考查相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式的應(yīng)用,所求的事件的概率與它的對(duì)立事件的概率之間的關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•樂(lè)山二模)甲、乙兩人進(jìn)行兩種游戲,兩種游戲的規(guī)則由下表給出:(球的大小都相同)
游戲1 游戲2
裁判的口袋中有4個(gè)白球和5個(gè)紅球 甲的口袋中有6個(gè)白球和2個(gè)紅球
乙的口袋中有3個(gè)白球和5個(gè)紅球
由裁判摸兩次,每次摸一個(gè),記下顏色后放回 每人都從自己的口袋中摸一個(gè)球
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
(1)分別求出在游1中甲、乙獲勝的概率;
(2)求出在游戲2中甲獲勝的概率,并說(shuō)明這兩個(gè)游戲哪個(gè)游戲更公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省樂(lè)山市高中2012屆高三第二次調(diào)查研究考試數(shù)學(xué)文科試題 題型:044

甲、乙兩人進(jìn)行兩種游戲,兩種游戲的規(guī)則由下表給出:(球的大小都相同)

(1)分別求出在游1中甲、乙獲勝的概率;

(2)求出在游戲2中甲獲勝的概率,并說(shuō)明這兩個(gè)游戲哪個(gè)游戲更公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩人進(jìn)行兩種游戲,兩種游戲的規(guī)則由下表給出:(球的大小都相同)
游戲1 游戲2
裁判的口袋中有4個(gè)白球和5個(gè)紅球 甲的口袋中有6個(gè)白球和2個(gè)紅球
乙的口袋中有3個(gè)白球和5個(gè)紅球
由裁判摸兩次,每次摸一個(gè),記下顏色后放回 每人都從自己的口袋中摸一個(gè)球
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
摸出的兩球同色→甲勝
摸出的兩球不同色→乙勝
(1)分別求出在游1中甲、乙獲勝的概率;
(2)求出在游戲2中甲獲勝的概率,并說(shuō)明這兩個(gè)游戲哪個(gè)游戲更公平.

查看答案和解析>>

同步練習(xí)冊(cè)答案