精英家教網 > 高中數學 > 題目詳情

以下有四種說法:

①若p或q為真,p且q為假,則p與q必為一真一假;

②若數列的前n項和為Sn=n2+n+l,n∈N*,則∈N*

③若實數t滿足,則稱t是函數f(x)的一個次不動點.設函數f(x)=Inx與函數g(x)=ex(其中e為自然對數的底數)的所有次不動點之和為m,則m=0

④若定義在R上的函數f(x)滿足,則6為函數f(x)的周期

以上四種說法,其中說法正確的是

       A.①③                 B.③④                   C.①②③               D.①③④

【答案】D

【解析】①若p或q為真,p且q為假,則p與q必為一真一假,正確;

       ②若數列,錯誤。

       ③若實數t滿足的一個次不動點,設函數與函數為自然對數的底數)的所有次不動點之和為m,則m=0,正確。由函數的性質知:方程和方程的兩個互為相反數,所以此命題正確;

       ④若定義在R上的函數則6是函數的周期,正確。因為,所以,所以周期為6.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數據得到其回歸直線方程l: 
y
=bx+a
,則l一定經過點P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
①“m是實數”是“m是有理數”的充分不必要條件;
②命題“若a<b,則a+c<b+c”的逆否命題是“若a+c≥b+c,則a≥b”;
③“x=3”是“x2-2x-3=0”的必要不充分條件;
④命題“?n∈R,使得n2+n<0”的否定為“?n∈R,均有n2+n≥0”.
其中正確說法的序號為
②④
②④
.(填序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*
(3)若a>b,則ac>bc;
(4)“x=1”是“x2-1=0”的充分不必要條件.
以上四種說法,其中正確說法的序號為
(1)、(4)
(1)、(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)若定義在R上的函數f(x)滿足f(x+2)=-f(x-1),則6為函數f(x)的周期.
以上四種說法,其中正確說法的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若f′(x0)=0,則f(x)在x=x0處取得極值;
(2)由變量x和y的數據得到其回歸直線方程l: 
y
=bx+a
,則l一定經過點P(
.
x
, 
.
y
)
;
(3)若p∨q為真,p∧q為假,則p與q必為一真一假;
(4)函數f(x)=sin(x+
π
6
)cos(x+
π
6
)
最小正周期為π,其圖象的一條對稱軸為x=
π
12

以上四種說法,其中正確說法的序號為
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

同步練習冊答案