【題目】已知函數(shù)f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值為1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,若方程g(x)=m在x∈[0, ]上有解,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:解:∵函數(shù)f(x)=2 sin(x+ )cos(x+ )+sin2x+a= sin(2x+ )+sin2x+a
= cos2x+sin2x+a=2sin(2x+ )+a 的最大值為2+a=1,
∴a=﹣1.
令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,
可得函數(shù)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z
(2)解:∵將f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)=2sin[2(x+ )+ ]﹣1
=2sin(2x+ )﹣1的圖象,
∵x∈[0, ],∴2x+ ∈[ , ],
∴當(dāng)2x+ = 時(shí),g(x)取得最大值為 ﹣1;
當(dāng)2x+ = 時(shí),g(x)取得最小值﹣3,
故﹣3≤m≤ ﹣1
【解析】(1)利用三角恒等變換化簡(jiǎn)f(x)的解析式,再利用正弦函數(shù)的增區(qū)間,求得函數(shù)f(x)的單調(diào)遞增區(qū)間.(2)利用y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得m的范圍.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為, ,過(guò)點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,P,Q分別為AB,DA上動(dòng)點(diǎn),且△APQ的周長(zhǎng)為2,設(shè) AP=x,AQ=y.
(1)求x,y之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)判斷∠PCQ的大小是否為定值?并說(shuō)明理由;
(3)設(shè)△PCQ的面積分別為S,求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率與雙曲線: 的離心率互為倒數(shù),且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,已知是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且與交于點(diǎn), 為坐標(biāo)原點(diǎn),求證: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形O′A′B′C′的邊長(zhǎng)為1cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖的周長(zhǎng)是( )
A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.
(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設(shè)BD=1,求三棱錐D﹣ABC的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是p萬(wàn)元和q萬(wàn)元.它們與投入資金x萬(wàn)元的關(guān)系是:p= x,q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品,為獲得最大利潤(rùn),對(duì)這兩種商品的資金分別投入多少時(shí),能獲取最大利潤(rùn)?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在和處取得極值.
(1)求f(x)的表達(dá)式和極值.
(2)若f(x)在區(qū)間[m,m+4]上是單調(diào)函數(shù),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接青奧會(huì),南京將在主干道統(tǒng)一安裝某種新型節(jié)能路燈,該路燈由燈柱和支架組成.在如圖所示的直角坐標(biāo)系中,支架ACB是拋物線y2=2x的一部分,燈柱CD經(jīng)過(guò)該拋物線的焦點(diǎn)F且與路面垂直,其中C在拋物線上,B為拋物線的頂點(diǎn),DH表示道路路面,BF∥DH,A為錐形燈罩的頂,燈罩軸線與拋物線在A處的切線垂直.安裝時(shí)要求錐形燈罩的頂?shù)綗糁木嚯x是1.5米,燈罩的軸線正好通過(guò)道路路面的中線.
(1)求燈罩軸線所在的直線方程;
(2)若路寬為10米,求燈柱的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com