已知命題p:3≥3,q:3>4,則下列判斷正確的是( 。
A.p∨q為真,p∧q為假,¬p為假
B.p∨q為真,p∧q為假,¬p為真
C.p∨q為假,p∧q為假,¬p為假
D.p∨q為真,p∧q為真,¬p為假
對于命題p:3≥3
顯然p真命題
對于命題q:3>4,
顯然q假命題
∴根據(jù)復(fù)合命題的真假判定知
p∨q為真,p∧q為假,¬p為假
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知手>0,設(shè)p:函數(shù)y=手w在R上單調(diào)遞減;g:不等式w+|w-2手|>1的解集為R.w果p∨g為真,p∧g為假,求實數(shù)手的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:“存在實數(shù)a,使直線x+ay-2=0與圓x2+y2=1有公共點”,命題q:“存在實數(shù)a,使點(a,1)在橢圓
x2
8
+
y2
2
=1
內(nèi)部”,若命題“p且?q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a∈R,設(shè)p:函數(shù)f(x)=x2+(a-1)x是區(qū)間(1,+∞)上的增函數(shù),q:方程x2-ay2=1表示雙曲線.
(1)若p為真命題,求實數(shù)a的取值范圍;
(2)若“p且q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知命題p:方程
x2
m-4
+
y2
m-2
=1
表示焦點在y軸的雙曲線;命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命題,“p∨q”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知命題p:方程x2+(m-3)x+1=0無實根,命題q:方程x2+
y2
m-1
=1是焦點在y軸上的橢圓.若¬p與p∧q同時為假命題,求m的取值范圍.
(2)已知命題p:2x2-3x+1≤0和命題q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-m(m∈R),g(x)=ax2+
1
2
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)設(shè)A:存在實數(shù)x使得f(x)≤0(m∈R)成立;B:當(dāng)a=-2時,不等式g(x)>0有解.若“A”是“B”的必要不充分條件,求實數(shù)m的取值范圍;
(Ⅱ)設(shè)C:函數(shù)y=h(x)在區(qū)間(4,+∞)上單調(diào)遞增;D:?x∈R,不等式g(x)>0恒成立.請問,是否存在實數(shù)a使“非C”為真命題且“C∨D”也為真命題?若存在,請求實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:
x+2
x-3
≥0
,q:x∈Z,若“p且q”與“非q”同時為假命題,求x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

條件,條件,則p是q的(    ).
A.充分不必要條件B.必要不充分條件充要條件   D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案