設(shè)函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,且x=1時(shí)f(x)取極小值-

(1)求a,b,c,d的值;

(2)當(dāng)x∈[-1,1]時(shí),圖象上是否存在兩點(diǎn),使過此兩點(diǎn)處的切線互相垂直,試證明你的結(jié)論;

(3)若x1、x2∈[-1,1]求證:|f(x1)-f(x2)|≤

答案:
解析:

  (1)a= ,b=0,c=-1,d=0

  (1)a=,b=0,c=-1,d=0

  (2)不存在這樣的兩點(diǎn)使結(jié)論成立

  (3)略


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=x+,x∈[0,+∞)

(1)當(dāng)a=2時(shí),求f(x)的最小值.

(2)當(dāng)0<a<1時(shí),判斷f(x)的單調(diào)性,并寫出f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=x2-2mx+m2+1(m∈R+),g(x)=x+(k∈R+).

(1)當(dāng)x∈(0,∞)時(shí),f(x)和g(x)都滿足:存在實(shí)數(shù)a,使f(x)≥f(a),g(x)≥g(a)且f(a)=g(a)-m.求f(x)和g(x)的表達(dá)式;

(2)(文科不做、理科做)對(duì)于(1)中的f(x),設(shè)實(shí)數(shù)b滿足|x-b|<1.

求證:|f(x)-f(b)|<2|b|+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,則對(duì)任意實(shí)數(shù)均有f(x)≥0成立,求f(x)的表達(dá)式.

(2)(文)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

(理)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=xf(x)-kx是單調(diào)遞增,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=x2+ax+lg|a+1|(a≠-1,a∈R)

(1)求證:f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)之和,并求出g(x)和h(x)的表達(dá)式.

(2)若f(x)和g(x)在區(qū)間[|a+1|,a2]上均為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

設(shè)函數(shù)f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,則對(duì)任意實(shí)數(shù)均有f(x)≥0成立,求f(x)的表達(dá)式.

(2)在(1)條件下,當(dāng)x∈[-2,2],g(x)=xf(x)-kx單調(diào)遞增,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案