橢圓的離心率為,兩焦點分別為,點是橢圓C上一點,的周長為16,設線段MO(O為坐標原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.
(1)
(2)直線l與圓O相交
【解析】
試題分析:解:(1)設橢圓C的半焦距為c,則,即① 1分
又 ② 2分
聯(lián)立①②,解得,所以.
所以橢圓C的方程為. 4分
而橢圓C上點與橢圓中心O的距離為
,等號在時成立,…6分
而,則的最小值為,從而,則圓O的方程為. 8分
(2)因為點在橢圓C上運動,所以.即.
圓心O到直線的距離. 11分
當,,,則直線l與圓O相切.
當,,則直線l與圓O相交. 14分
考點:直線與圓的關(guān)系,橢圓的方程
點評:主要是考查了橢圓的性質(zhì)的運用,以及圓的方程,和直線與圓的位置關(guān)系,屬于基礎(chǔ)題。
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆北京市東城區(qū)高三12月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
點構(gòu)成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com