【題目】如圖,已知AB是圓O的直徑,C是圓O上一點(diǎn),AC=BC,且PA⊥平面ABC,EAC的中點(diǎn),FPB的中點(diǎn),PA=AB=2.求:

(Ⅰ)異面直線EFBC所成的角;

(Ⅱ)點(diǎn)A到平面PBC的距離.

【答案】(Ⅰ)60°(Ⅱ)

【解析】

(Ⅰ)連接OEOF,說(shuō)明∠FEO是異面直線EFBC所成的角,解三角形即可。

(Ⅱ)證明BC⊥平面PAC,即可計(jì)算出SPBC=2,利用等體積法列方程即可得解。

解:(I)連接OEOF

OAB的中點(diǎn),EAC的中點(diǎn),

OEBC,

∴∠FEO是異面直線EFBC所成的角,

OAB的中點(diǎn),FPB的中點(diǎn),

OFPA,又PA⊥平面ABC

OF⊥平面ABC,

AB是圓O的直徑,∴ACBC,

AC=BCAB=2,∴BC=,∴OE=BC=,

OF=PA=,∴tanFEO==,

∴異面直線EFBC所成的角為60°

II)∵PA⊥平面ABC,BC平面ABC

PABC,

AB是圓O的直徑,∴ACBC,

PAAC=A

BC⊥平面PAC,∴BCPC

PC==2,∴SPBC==2

設(shè)A到平面PBC的距離為h,則VA-PBC==

VA-PBC=VP-ABC===,

h=,即A到平面PBC的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.互相垂直的兩條直線的直觀圖仍然是互相垂直的兩條直線

B.梯形的直觀圖可能是平行四邊形

C.矩形的直觀圖可能是梯形

D.正方形的直觀圖可能是平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l方程為(m+2x-m+1y-3m-7=0,mR

(Ⅰ)求證:直線l恒過(guò)定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo);

(Ⅱ)若直線lx軸,y軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,ABBC,AS=AB,點(diǎn)E,F,G分別在棱SA,SB,SC上,且平面EFG∥平面ABC,點(diǎn)ESA的中點(diǎn).求證:

(Ⅰ)AF⊥平面SBC

(Ⅱ)SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( 。

A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為

B. 回歸直線過(guò)樣本點(diǎn)的中心

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加

D. yx具有正的線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠為了研究單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到0.1);

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠以每?jī)?cè)5元的價(jià)格將書(shū)籍出售給訂貨商,求印刷廠二次印刷10千冊(cè)獲得的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解學(xué)生參加體育活動(dòng)的情況,學(xué)校對(duì)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個(gè)問(wèn)題是“你平均每天參加體育活動(dòng)的時(shí)間是多少?”,共有4個(gè)選項(xiàng):A,1.5小時(shí)以上,B,1-1.5小時(shí),C,0.5-1小時(shí),D,0.5小時(shí)以下.圖(1),(2)是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問(wèn)題:

(1)本次一共調(diào)查了多少名學(xué)生.

(2)在圖(1)中將對(duì)應(yīng)的部分補(bǔ)充完整.

(3)若該校有3000名學(xué)生,你估計(jì)全校有多少名學(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5小時(shí)以下?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一圓的圓心在直線上,且該圓經(jīng)過(guò)兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線與圓相交于,兩點(diǎn),試求面積的最大值和此時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案