【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交兩點,(兩點均不在坐標軸上),且使得直線,的斜率之積為定值?若存在,求此圓的方程與定值;若不存在,請說明理由.
【答案】(1),(2)存在符合條件的圓,且此圓的方程為,定值為
【解析】
(1)利用離心率和點在橢圓上列出方程,解出即可
(2)當直線的斜率存在時,設的方程為,先將直線的方程與橢圓的方程聯(lián)立,利用直線與橢圓有且僅有一個公共點,推出,然后通過直線與圓的方程聯(lián)立,
設,,結合韋達定理,求解直線的斜率乘積,推出為定值,然后再驗證直線的斜率不存在時也滿足即可
(1)由題意得:,
又因為點在橢圓上
所以
解得
所以橢圓的標準方程為:
(2)結論:存在符合條件的圓,且此圓的方程為
證明如下:
假設存在符合條件的圓,且設此圓的方程為:
當直線的斜率存在時,設的方程為
由方程組得
因為直線與橢圓有且僅有一個公共點
所以
即
由方程組得
則
設,,則
設直線,的斜率分別為,
所以
將代入上式得
要使得為定值,則,即
所以當圓的方程為時,
圓與的交點,滿足為定值
當直線的斜率不存在時,由題意知的方程為
此時圓與的交點,也滿足為定值
綜上:當圓的方程為時,
圓與的交點,滿足為定值
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有2位男生,3位女生去參加一個聯(lián)歡活動,該活動有甲、乙兩個項目可供參加者選擇.
(Ⅰ)為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個項目聯(lián)歡,擲出點數(shù)為1或2的人去參加甲項目聯(lián)歡,擲出點數(shù)大于2的人去參加乙項目聯(lián)歡.求這5人中恰好有3人去參加甲項目聯(lián)歡的概率;
(Ⅱ)若從這5人中隨機選派3人去參加甲項目聯(lián)歡,設表示這3個人中女生的人數(shù),求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】條形碼是由一組規(guī)則排列的條、空及其對應的代碼組成,用來表示一定的信息,我們通常見的條形碼是“”通用代碼,它是由從左到右排列的個數(shù)字(用,,…,表示)組成,這些數(shù)字分別表示前綴部分、制造廠代碼、商品代碼和校驗碼,其中是校驗碼,用來校驗前個數(shù)字代碼的正確性.圖(1)是計算第位校驗碼的程序框圖,框圖中符號表示不超過的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(2)所示(),其中第個數(shù)被污損,那么這個被污損數(shù)字是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產、兩種產品,生產每產品所需的勞動力和煤、電消耗如下表:
產品品種 | 勞動力(個) | 煤 | 電 |
已知生產產品的利潤是萬元,生產產品的利潤是萬元.現(xiàn)因條件限制,企業(yè)僅有勞動力個,煤,并且供電局只能供電,則企業(yè)生產、兩種產品各多少噸,才能獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品廠為了檢查一條自動包裝流水線的生產情況,隨即抽取該流水線上件產品作為樣本算出他們的重量(單位:克)重量的分組區(qū)間為,,……,由此得到樣本的頻率分布直方圖,如圖所示.
(1)根據(jù)頻率分布直方圖,求重量超過克的產品數(shù)量.
(2)在上述抽取的件產品中任取件,設為重量超過克的產品數(shù)量,求的分布列.
(3)從流水線上任取件產品,求恰有件產品合格的重量超過克的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求和的直角坐標方程;
(2)已知直線與軸交于點,且與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是我省某地區(qū)2012年至2018年農村居民家庭年純收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年純收入 | 2 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
(1)求關于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2018年該地區(qū)農村居民家庭年純收入的變化情況,并預測該地區(qū)2019年農村居民家庭年純收入(結果精確到0.1)。
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線,的直角坐標方程;
(2)設曲線,交于點,,已知點,求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com