【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,給出以下四個命題:①AC∥平面A′DF;②平面A′GF⊥平面BCED;③動點A′在平面ABC上的射影在線段AF上;④異面直線A′E與BD不可能垂直.其中正確命題的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)△AED繞DE旋轉(zhuǎn)過程中,對圖形中命題涉及到的平行、垂直關(guān)系進行判斷,判斷每個命題的真假
解:由題意知,AC∥DF,AC平面A′DF,DF平面A′DF,∴AC∥平面A′DF,①正確;
等邊三角形ABC的中線AF與中位線DE相交于G,所以,且,所以平面,平面,故有平面A′GF⊥平面BCED,②正確;
平面A′GF⊥平面BCED,平面A′GF平面BCED ,故過A′作AF的垂線垂直于平面ABC,所以A′在平面ABC上的射影在線段AF上,③正確;
當(dāng)(A′E)2+EF2=(A′F)2時,異面直線A′E與BD垂直,④錯誤;
綜上,正確的命題序號是①②③.
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且 .
(1)證明:sinAsinB=sinC;
(2)若 ,求tanB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+3a+2.
(1)若函數(shù)f(x)的值域為[0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)實數(shù),求g(a)=2-a|a+3|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象關(guān)于直線x=-對稱,且.
(1)求實數(shù)a,b的值;
(2)求函數(shù)在區(qū)間[-3,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點為,且點在橢圓上,為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過定點的直線與橢圓交于不同的兩點、,且,求直線的斜率的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計x的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C:過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設(shè)點P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com