已知數(shù)列{an}滿足:a1,an+1 (n∈N*).
(1)求a2,a3的值;
(2)證明:不等式0<anan+1對于任意n∈N*都成立.
(1)a2,a3(2)見解析
(1)由題意,得a2a3.
(2)①當(dāng)n=1時,由(1)知0<a1a2,不等式成立.
②設(shè)當(dāng)nk(k∈N*)時,0<akak+1成立,則當(dāng)nk+1時,由歸納假設(shè),知ak+1>0.
ak+2ak+1>0,
所以0<ak+1ak+2,
即當(dāng)nk+1時,不等式成立.
由①②,得不等式0<anan+1對于任意n∈N*成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前項和為.
(1)請寫出數(shù)列的前項和公式,并推導(dǎo)其公式;
(2)若,數(shù)列的前項和為,求的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)無窮數(shù)列的首項,前項和為),且點(diǎn)在直線上(為與無關(guān)的正實數(shù)).
(1)求證:數(shù)列)為等比數(shù)列;
(2)記數(shù)列的公比為,數(shù)列滿足,設(shè),求數(shù)列的前項和;
(3)若(2)中數(shù)列{Cn}的前n項和Tn當(dāng)時不等式恒成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,anf (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)Sn是等差數(shù)列{an}的前n項和,若,則=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6a8=-10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將全體正整數(shù)排成一個三角形數(shù)陣:
1
2  3
4  5  6
7  8  9  10
11  12 13  14 15
……
根據(jù)以上排列規(guī)律,數(shù)陣中第n(n≥3)行從左至右的第3個數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=cos x(x∈(0,2π))有兩個不同的零點(diǎn)x1x2,方程f(x)=m有兩個不同的實根x3,x4.若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實數(shù)m的值為(  ).
A.-B.C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,如果,,則數(shù)列前9項的和為( )
A.297B.144 C.99D.66

查看答案和解析>>

同步練習(xí)冊答案